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TopMoving Average 7.2

• All weights of the moving average (MA) are set to one: 

• Simple “low pass” characteristic

• Low cost - no multiplies required.

This filter might preferably be implemented use a power of two number
of weights - why?
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Notes:

Developed by:
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This filter is a very simple low pass characteristic.
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TopDifferentiator 7.3

• Two weight filter, with values of 1 and -1: 

• Simple “high pass” magnitude response with no multiplies required.

• Output is:  and in the z-domain:

and hence the differentiator transfer function is:

1

y(k)

x(k)

-1

y k( ) x k( ) x k 1–( )–=

       Y z( ) X z( ) X z( )z 1––=      Y z( ) X z( ) 1 z 1––[ ]=⇒

H z( ) Y z( )
X z( )
------------ 1 z 1––= =



Notes:

Developed by:

Top

Inputing a constant value, ie. DC or 0 Hz will result in no output appearing after an initial transient. Hence there
is a spectral zero at 0Hz, i.e. a spectral zero is where the gain is precisely 0 in a linear scale, and if we attempt
to represent in a log scale: . 20 0log ∞–=
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TopIntegrator 7.4

• Integrator is a single weight IIR filter: 

• “Low pass” (infinite gain at DC) with no multiplies required.

• Output in the time domain is:  and in the z
domain:

and hence the integrator transfer function is:

p(k) q(k)
+

+

q k( ) p k( ) p k 1–( )+=

       Q z( ) P z( ) Q z 1–( )+=      Q z( ) 1 z 1––[ ] P z( )=⇒

G z( ) Q z( )
P z( )
------------ 1

1 z 1––
-----------------= =



Notes:

Developed by:

Top

If a feedback weight of b is introduced, where  this is often refered to as a leaky integrator. Generally
speaking for DSP for FPGAs/ASICs we will not be concerned with leaky integrators. If  then the filter
would have a pole outside of the unit circle and would be diverging or unstable. .

An integrator and a differentiator are clearly perfect inverses of each other. From a spectral point of view it is
interesting to note that the differentiator has infinite attenuation at 0 Hz and the integrator has infinite gain at 0
Hz,.... and any engineer knows infinity multiplied by zero, might just be 1 in many cases!

b 1<
b 1>

p(k) q(k)
b

G z( )H z( ) 1
1 z 1––
------------------⎝ ⎠
⎛ ⎞ 1 z 1––( ) 1= =

p(k)
q(k)

1 -1

y(k)

y k( ) q k( ) q k 1–( )– p k( ) q k 1–( )+[ ] q k 1–( )– p k( )= = =
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TopComb Filter 7.5

• Weights set to 1 and -1 at either end of the filter.

• Simple multichannel frequency response - no multiplies required. 

• Using the z-notation to represent the 8 delays we can show as: 

1 -1
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x(k)

1
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x(k)

-1

z-8



Notes:

Developed by:

Top

A comb filter with N sample delays (or N+1 weights) will have N evenly spaced spectral zeroes from 0 to fs/2.
Therefore the 8 delay comb filter above will have 4 spectral zeroes from 0 to 5 MHz, at spacings of 1.25MHz,
when the sample rate is set to fs = 10MHz. 

1MHz 2MHz 3MHz 4MHz 5MHz
frequency6dB

G
ai

n/
dB

0
6

-20

-40

-60

http://www.steepestascent.com


August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopEight Weight Moving Average 7.6

• Consider again the moving average (MA); all weights of “1”

• True moving average if we scale the output by  (left shift 3 places)-
equivalent to all weights being 1/8.

• In the spectrum the moving average filter has N-1 spectral zeroes from
0 to . In our case , we can see 4 spectral zeroes from 0 to .
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H z( ) 1 z 1– z 2– z 3– z 4– z 5– z 6– z 7–+ + + + + + += 1
8
---

1
8
---

fs N 8= fs 2⁄



Notes:

Developed by:
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To allow a numerical representation, we choose 

We can see four spectral zeroes between 0 and , i.e. 8-1=7 spectral zeroes between 0 and . 
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TopNine Weight Moving Average (MA) 7.7

• All weights are “1”

• Multiplying by 1/9 is not so convenient......
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H z( ) 1 z 1– z 2– z 3– z 4– z 5– z 6– z 7–+ + + + + + + z 8–+( )19
---=



Notes:

Developed by:

Top

For ease of numerical representation, we choose 

We can see 4 spectral zeroes between 0 and , i.e. 9-1=8 spectral zeroes between 0 and .
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TopCascade Integrator Comb (CIC) 7.8

• Generate a MA impulse response with CIC structure (see Slide 7.6)

• Note that: 

• i.e an integrator and M comb weight CIC = M-1 weight MA

b=1
1 -1

y(k)

x(k)

1/8
Integrator Comb

H z( ) 1
1 z 1––
-----------------⎝ ⎠
⎛ ⎞ 1 z 8––( ) 1 z 8––

1 z 1––
-----------------= =

1 z 8––
1 z 1––
----------------- 1 z 1– z 2– z 3– z 4– z 5– z 6– z 7–+ + + + + + +=



Notes:

Developed by:

Top

It is interesting to note that the integrator has infinite gain at DC and the comb filter has zero gain an DC!

CIC Advantages: CIC has Only two additions compare to 8 additions in MA.

CIC Disadvantages: CIC requires 9 storage registers, and MA requires only 7 storage register.

1 z 8––
1 z 1––
----------------- 1 z 1– z 2– z 3– z 4– z 5– z 6– z 7–+ + + + + + +=

1 z 8–– 1 z 1– z 2– z 3– z 4– z 5– z 6– z 7–+ + + + + + +( ) 1 z 1––( )=

1 z 8–– 1 z 1– z 2– z 3– z 4– z 5– z 6– z 7–+ + + + + + +=
 z 1–– z 2–– z 3–– z 4–– z 5–– z 6–– z 7– z 8–––
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TopIntegrator Overflow 7.9

• The integrator of the CIC has infinite gain at DC (0 Hz).

• Therefore consider the input of a step signal to the CIC: 

• The integrator output “grows” unbounded for the step input.

b=1
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Notes:

Developed by:

Top

Eventually the integrator output will overflow.....

To address this we can use modulo arithmetic.
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TopCascade of CICs 7.10

• We can cascade CIC filters to produce “better” low pass characteristics:

• Cascade of 5 CICs of 8th order MA filters:

• Note however the baseband droop is “worse”.

CIC CIC CIC CIC CIC
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CIC



Notes:

Developed by:

Top

Plots of CIC and cascade of 5 CICs for 8th order moving average. 
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TopRecovery of an IF modulated Signal 7.11

• Consider the following scenario:

• Signal of interest centered at 

• Signal bandwidth = 100kHz

• Sampling rate, 

• Requirement is to recover the IF signal at baseband frequencies using
as low computation as possible.
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fs 10MHz=
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Notes:

Developed by:
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This bandpass signal has been created by simple amplitude modulation:

Amplitude of a “high” frequency carrier sinusoid is varied in proportion to the amplitude of signal with lower
frequency components.
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TopRecovery of an IF modulated Signal 7.12

• When the signal is received, the spectrum outside of the 50kHz band
of interest is likely to be occupied with other signals and noise:

• To recover we require to demodulate to baseband and then low pass
filter to recover the signal.
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Notes:

Developed by:
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TopDemodulation of Signal 7.13

• Sampling with a high frequency ADC we can first digitally demodulate
the signal:

ADC

fs 10MHz=

2.5MHz cosine
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Notes:
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TopDemodulation of Signal 7.14

• ....then low pass filter:

ADC
Low Pass 

Digital Filter

fs 10MHz=

2.5MHz cosine
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Notes:

Developed by:
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Cost of Digital Filter

MACs/sec = 10,000,000 x 2701 = 27,010,000,000 = 27 billion MACs/sec!
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TopBut remember the Downsampling...! 7.15

• ....then low pass filter:

ADC
Low Pass 

Digital Filter
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Notes:

Developed by:

Top

In this example the final required sample rate is 250kHz and hence as we have bandlimited we can now
downsample by a factor of 40.

Cost of Digital Filter

MACs/sec = 10,000,000/40 x 2701 = 270,100,000 = 675 million MACs/sec!
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TopCIC stage for Decimation 7.16

• Consider now designing the low pass filter to extract 0 to 50kHz using
a cascade of low cost simpler filters. Is there a cost saving?

• If we low pass filter the signal of interest with the 5th order CIC then
downsample by 2 to 5MHz, then the aliasing of higher frequency
signals comes from frequency regions where the energy is very low.
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Notes:

Developed by:
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The output spectrum almost leaves the 0 to 50kHz signal untouched in and attentuates the signal energy above
50kHz as below.
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TopFinal Stage Decimation 7.17

• Noting the other empty spectral regions we could downsample by 4: 

....in fact we could probably downsample by 8: 
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TopDownsampling Values 7.18

• We can then perform a final stage of decimation using a standard low
pass filter: 

• Therefore we are now anticipating that the above staged decimation is
similar to the one step decimation presented earlier (and shown below):

8
fs=10MHz fs=1.25MHz

5th Order 
CIC

Low Pass
Filter

0.625MHz50kHz

5

171 weights

fs=250kHz

40
fs=10MHz

Low Pass
Filter fs=250kHz
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Notes:
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TopCost Comparison 7.19

• One stage Low Pass Filter decimation: 

• 2701 weights, 10MHz sampling, Downsample 40

• 5th Order CIC and low pass (at  = 1.25MHz)

• 171 weights, 1.25MHz sampling, Downsample 5

• 5 CICs with 2 adds each at 10MHz = 100 million adds/sec

• Computation reduced by a factor of almost 16!

2701 10 000 000, ,×
40

---------------------------------------------------- 675.25 million MACs/sec=

fs

171 1 250 000, ,×
5

--------------------------------------------- 42.75 million MACs/sec=



Notes:
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TopCIC Droop 7.20

• One difference we have ignored so far is the “droop” at low frequencies
of the CIC low pass filter:
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Notes:
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Careful viewing of the spectrum shows that the droop is around 0.5dB:
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TopCorrecting the Droop 7.21

• So how do we correct the droop?

• Incorporate a “lift” in passband of the final stage low pass filter: 

• ....therefore the decision of this final stage filter must be done very
carefully to correct for the droop.

0.625MHz50kHz

0.5dB



Notes:
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TopCIC Implementation 7.22

• Consider the 3rd order CIC cascade shown below with a final stage
downsampler: 

• We can rearrange the order of the filtering:
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Integrator
Comb
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Notes:
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We can represent the comb filter more compactly using the z-1 notation for a delay: 

1 -1
y(k)

x(k)

Integrator Comb
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Integrator Comb

z-1
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z-1

z-8

8 delays
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TopCIC Implementation 7.23

• Based on the noble identity we can move the downsampler to before
the comb filters: 

• Hence the comb filters now run at the downsampled rate, and require
fewer registers for implementation.
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Integrator
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Integrator
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Notes:

Developed by:
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The noble identity allows the two systems below to be demonstrated to be equivalent.: 
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TopCIC Filter study 7.24

• In the next few slides the Cascaded Integrator-Comb filter is examined
in more detail. This will cover the following areas:

• Introduction to the CIC filter and some examples of where it
may be used

• An examination of word length growth in CIC filters and how
‘bit-pruning’ may be used to reduce resource consumption

• The Sharpened CIC (SCIC) filter structure: how it differs from
the CIC filter and where its use is appropriate

• The Interpolated Second Order Polynomial (ISOP) filter: an
alternative to the SCIC filter for compensating for CIC filter
passband droop

• A discussion of the costs and benefits of CIC and SCIC filters
compared with non-recursive, ‘moving average’-based filter
structures
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