Principles of Dataspace Systems

Alon Halevy
Google Inc.

ABSTRACT

The most acute information management challenges today stem
from organizations relying on a large number of diverse, inter-
related data sources, but having no means of managing them
in a convenient, integrated, or principled fashion. These chal-
lenges arise in enterprise and government data management,
digital libraries, “smart” homes and personal information man-
agement. We have proposed dataspaces as a data management
abstraction for these diverse applications and DataSpace Sup-
port Platforms (DSSPs) as systems that should be built to pro-
vide the required services over dataspaces. Unlike data inte-
gration systems, DSSPs do not require full semantic integra-
tion of the sources in order to provide useful services. This
paper lays out specific technical challenges to realizing DSSPs
and ties them to existing work in our field. We focus on query
answering in DSSPs, the DSSP’s ability to introspect on its
content, and the use of human attention to enhance the seman-
tic relationships in a dataspace.

1. INTRODUCTION

Most data management scenarios today rarely have a situa-
tion in which all the data can be fit nicely into a conventional
relational DBMS, or into any other single data model or sys-
tem. Instead, users and developers are often faced with a set
of loosely connected data sources and thus must individually
and repeatedly address low-level data management challenges
across heterogeneous collections. The first set of challenges
are user facing functions, and include locating relevant data
sources, providing search and query capability and tracing lin-
eage and determining accuracy of the data. The second set of
challenges, on the administration side, include enforcing rules,
integrity constraints and naming conventions across a collec-
tion, providing availability, recovery and access control, and

Michael Franklin

University of California, Berkeley

David Maier
Portland State University

managing the evolution of data and metadata.

Such challenges are ubiquitous — they arise in enterprises
(large or small): within and across government agencies, large
science-related collaborations, libraries (digital or otherwise),
battlefields, in “smart” homes, search for structured content
on the WWW and even on one’s PC desktop or other personal
devices. In each of these scenarios, however, there is some
identifiable scope and control across the data and underlying
systems, and hence one can identify a space of data, which, if
managed in a principled way, will offer significant benefits to
the organization.

We recently introduced dataspaces as a new abstraction for
data management in such scenarios, and proposed the design
and development of DataSpace Support Platforms (DSSPs) as
a key agenda item for the data management field [22]. In a
nutshell, a DSSP offers a suite of interrelated services and
guarantees that enables developers to focus on the specific
challenges of their applications, rather than on the recurring
challenges involved in dealing consistently and efficiently with
large amounts of interrelated but disparately managed data. In
particular, a DSSP helps to identify sources in a dataspace and
inter-relate them, offers basic query mechanisms over them,
including the ability to introspect about the contents. A DSSP
also provides some mechanisms for enforcing constraints and
some limited notions of consistency and recovery.

Traditionally, data integration and data exchange systems [34]
have aimed to offer many of the purported services of datas-
pace systems. In fact, DSSPs can be viewed as the next step in
the evolution of data integration architectures, but are distinct
from current data integration systems in the following way.
Data integration systems require semantic integration before
any services can be provided. Hence, although there is not a
single schema to which all the data conforms and the data re-
sides in a multitude of host systems, the data integration sys-
tem knows the precise relationships between the terms used in
each schema. As a result, significant upfront effort is required
in order to set up a data integration system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific regardless of how integrated they are. For example, a DSSP
permission and/or a fee. can provide keyword search over all of its data sources, simi-

PODS’06, June 26-28, 2006, Chicago, Illinois, USA. X ..
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00. lar to that provided by existing desktop search systems. When

Dataspaces are not a data integration approach; rather, they
are more of a data co-existence approach. The goal of datas-
pace support is to provide base functionality over all data sources,

more sophisticated operations are required, such as relational-
style queries, data mining, or monitoring over certain sources,
then additional effort can be applied to more closely integrate
those sources in an incremental, “pay-as-you-go” fashion. Sim-
ilarly, in terms of traditional database guarantees, initially a
DSSP can only provide weaker guarantees of consistency and
durability. As stronger guarantees are desired, more effort can
be put into making agreements among the various owners of
data sources, and opening up certain interfaces (e.g., for com-
mit protocols). In a sense, the dataspace approach postpones
the labor-intensive aspects of data integration until they are
absolutely needed.

The following properties distinguish DSSPs from traditional
databases and data integration systems:

e A DSSP must deal with data and applications in a wide
variety of formats accessible through many systems with
different interfaces. A DSSP is required to support all
the data in the dataspace rather than leaving some out,
as with DBMSs.

e Although a DSSP offers an integrated means of search-
ing, querying, updating, and administering the datas-
pace, often the same data may also be accessible and
modifiable through an interface native to the system host-
ing the data. Thus, unlike a DBMS, a DSSP is not in full
control of its data.

e Queries to a DSSP may offer varying levels of service,
and in some cases may return best-effort or approximate
answers. For example, when individual data sources are
unavailable, a DSSP may be capable of producing the
best results it can, using the data accessible to it at the
time of the query.

e A DSSP must offer the tools and pathways to create
tighter integration of data in the space as necessary.

Much of the ongoing work in our community is already very
relevant to the development of DSSPs. The goal of this paper
is to describe several specific challenges to building DSSPs,
put them in the context of existing recent work, and propose
a set of principles to underly this body of work. This paper
is slightly biased towards problems of theoretical nature, and
does not attempt to be comprehensive in its coverage of the
challenges, and certainly not in its coverage of existing work.
The original vision for DSSPs and a description of its proposed
components appear in [22].

Section 2 sets the stage by motivating dataspaces with a few
examples. The subsequent sections describe the challenges.
Section 3 describes challenges concerning query answering
in DSSPs. Section 4 describes the need for a DSSP to intro-
spect on its content and coverage, and Section 5 outlines how
a DSSP should learn from users’ actions on dataspaces and
reuse them.

2. EXAMPLES

We begin by describing several motivating applications for
DSSPs that illustrate some of the main requirements from such
systems.

Personal Information Management: The goal of Personal
Information Management (PIM) [19, 21, 24, 42] is to offer
easy access and manipulation of all of the information on a
person’s desktop, with possible extension to mobile devices,
personal information on the Web, or even all the information
accessed during a person’s lifetime.

Recent desktop search tools are an important first step for
PIM, but are limited to keyword queries. Our desktops typ-
ically contain some structured data (e.g., spreadsheets) and
there are important associations between disparate items on
the desktop. Hence, the next step for PIM is to allow the user
to search the desktop in more meaningful ways. For exam-
ple, “find the list of students who took my database course
last quarter”, or “compute the aggregate balance of my bank
accounts”. We would also like to search by association, e.g.,
“find the email that John sent me the day I came back from
Hawaii”, or “retrieve the experiment files associated with my
SIGMOD paper this year”. Finally, we would like to query
about sources, e.g., “find all the papers where I acknowledged
a particular grant”, “find all the experiments run by a partic-
ular student”, or “find all spreadsheets that have a variance
column”.

The principles of dataspaces in play in this example are that
(1) a PIM tool must enable accessing all the information on the
desktop, and not just an explicitly or implicitly chosen subset,
and (2) while PIM often involves integrating data from mul-
tiple sources, we cannot assume users will invest the time to
integrate. Instead, most of the time the system will have to
provide best-effort results, and tighter integrations will be cre-
ated only in cases where the benefits will clearly outweigh the
investment.

Scientific data management: Consider a scientific research

group working on environmental observation and forecasting.

They may be monitoring a coastal ecosystem through weather

stations, shore- and buoy-mounted sensors and remote imagery.
In addition they can be running atmospheric and fluid-dynamics
models that simulate past, current and near-future conditions.

The computations may require importing data and model out-

puts from other groups, such as river flows and ocean circula-

tion forecasts. The observations and simulations are the inputs

to programs that generate a wide range of data products, for

use within the group and by others: comparison plots between

observed and simulated data, images of surface-temperature

distributions, animations of salt-water intrusion into an estu-

ary.

Such a group can easily amass millions of data products in
just a few years. While it may be that for each file, some-
one in the group knows where it is and what it means, no
one person may know the entire holdings nor what every file
means. People accessing this data, particularly from outside
the group, would like to search a master inventory that had ba-
sic file attributes, such as time period covered, geographic re-

gion, height or depth, physical variable (salinity, temperature,
wind speed), kind of data product (graph, isoline plot, anima-
tion), forecast or hindcast, and so forth. Once data products of
interest are located, understanding the lineage is paramount in
being able to analyze and compare products: What code ver-
sion was used? Which finite element grid? How long was the
simulation time step? Which atmospheric dataset was used as
input?

Soon, such groups will need to federate with other groups to
create scientific dataspaces of regional or national scope. They
will need to easily export their data in standard scientific for-
mats, and at granularities (sub-file or multiple file) that don’t
necessarily correspond to the partitions they use to store the
data. Users of the federated dataspace may want to see collec-
tions of data that cut across the groups in the federation, such
as all observations and data products related to water veloc-
ity, or all data related to a certain stretch of coastline for the
past two months. Such collections may require local copies or
additional indices for fast search.

This scenario illustrates several dataspace requirements, in-
cluding (1) a dataspace-wide catalog, (2) support for data lin-
eage and (3) creating collections and indexes beyond what any
one participating source supplies.

Structured queries and content on the WWW: While the
WWW is dominated by unstructured content, there are also

significant and growing opportunities for posing structured queries

and obtaining structured content on the web. The deep web,
the collection of content residing behind hundreds of thou-
sands of forms, is known to contain a huge amount of very
high-quality content. A more recent source of structured data
has recently been introduced by GoogleBase [26]. With Google-
Base, anyone can provide content in structured form through a
feed interface. The provider supplies a set of offers and spec-
ifies the class of the offers (e.g., cars, clinical trials, movie
reviews, recipes). Each class has (at best) a set of suggested
attributes, but providers are free to invent their own classes and
attributes. The result is an extremely heterogeneous database
about everything. Completely reconciling heterogeneity is not
even conceivable in this context. The key challenge is to in-
corporate structured data and queries into the mainstream web-
search experience. These web-search challenges highlight two
aspects of DSSPs: (1) the need for powerful search mecha-
nisms that accept keyword queries and select relevant struc-
tured sources that may answer them, and (2) the ability to
combine answers from structured and unstructured data in a
principled way.

3. QUERY ANSWERING

The first set of challenges we consider has to do with search-
ing and querying dataspaces. As a background for our discus-
sion, we briefly recount the logical components of dataspaces
and the modes in which we expect users to interact with them.

Dataspace participants and relationships: A dataspace should
contain all of the information relevant to a particular orga-
nization or entity regardless of its format and location, and

model a rich collection of relationships between data reposito-
ries. Hence, we model a dataspace as a set of participants and
relationships.

The participants in a dataspace are the individual data sources:
they can be relational databases, XML repositories, text files,
web services and software packages. They can be stored or
streamed (managed locally by data stream systems), or even
sensor deployments. We use the terms participants and sources
interchangeably.

Some participants may support expressive query languages,
while others are opaque and offer only limited interfaces for
posing queries (e.g., structured files, web services, or other
software packages). Some sources will support traditional up-
dates, while others may be append-only (for archiving pur-
poses), and still others may be immutable.

A dataspace should be able to model any kind of relation-
ship between two (or more) participants. On the more tradi-
tional end, we should be able to model that one participant is
a view or a replica of another, or to specify a schema mapping
between two participants. We would, however, like to model
a much broader set of relationships such as, that source A was
manually curated from sources B and C, or that sources E and
F were created independently, but reflect the same physical
system (e.g., mouse DNA). Relationships may be even less
specific, such as that two datasets came from the same source
at the same time.

Queries: We expect to see queries in a variety of languages.
Most activities would probably begin with keyword queries
over the dataspace, but it will also be common to see queries
resulting from filling forms (which lead to queries with mul-
tiple selection predicates). When users interact more deeply
with certain data sources, they may pose more complex queries,
which may lead to more complex SQL or XQuery queries.

Unless explicitly specified, users typically expect the query
to consider all relevant data in the dataspace, regardless of the
data model in which it is stored or the schema (if any) along
which it is organized. Hence, when a user poses a query in
terms of some schema of a particular source (e.g., fields in a
form), the expectation is that the system still try to obtain data
from other sources as well. Obtaining additional answers will
require transformations both on the schema and on the data
model.

Answers: There are several ways in which answers to queries
posed over dataspaces differ from traditional ones:

e Ranked: answers to queries will typically be ranked
similar to answers from an IR engine or web-search en-
gine. Ranking is necessary not only for keyword queries,
but also for structured queries when the translations to
other data sources may be approximate.

e Heterogeneous: answers will come from multiple sources
and will be in different data models and schemas. The
ranking needs to handle heterogeneity gracefully.

e Sources as answers: in addition to returning actual ground
answers to a query, (e.g., documents or tuples), a DSSP

can also return sources, i.e., pointers to places where
additional answers can be found.

e Iterative: Interactions with a dataspace are not typically
comprised of posing a single query and retrieving an an-
swer. Instead, the user has an information finding task
that requires posing a sequence of queries, each being a
refinement or modification of the previous ones.

e Reflection: we expect a DSSP to reflect on the com-
pleteness of its coverage and the accuracy of its data as
part of its answers. We postpone these issues to Sec-
tion 4.

3.1 Query answering model

As a first step in addressing the query answering challenges
in dataspaces we need a new formal model of queries and an-
swers. The model needs to account for all the aspects of an-
swers mentioned above.

Some work has already been done on ranking answers in
the context of keyword queries over relational databases and
over XML documents [31, 3, 9, 4, 28], and on finding relevant
information sources in large collections of formally described
sources [39]. The reader is referred to [12] for a thought pro-
voking paper on combining DB and IR technologies. How-
ever, these works need to be generalized considerably to cases
where we do not have semantic mappings of sources and where
the data models of the sources differ.

The general challenge we pose is:

CHALLENGE 3.1. Develop a formal model for studying query

answering in dataspaces. O

The following specific challenge is a first step in this direc-
tion:

SUB-CHALLENGE 3.2. Develop an intuitive semantics for
answering a query that takes into consideration a sequence of
earlier queries leading up to it.

In fact, one can go further and postulate that a single query
is actually not the right level of granularity to be considering.
Users are typically engaged in fasks that involve posing sev-
eral queries as well as other actions (e.g., browsing, creating
content). The following challenge attempts to formalize this
notion:

SUB-CHALLENGE 3.3. Develop a formal model of infor-
mation gathering tasks that include a sequence of lower-level
operations on a dataspace.

We will argue in Section 5 that if we are able to recognize
tasks from individual queries, we can develop automatic meth-
ods for creating better semantic integration between sources in
a dataspace.

Users will interact with a dataspace using a combination of
structured and unstructured queries. The following challenges
address some of the issues that arise because of that.

SUB-CHALLENGE 3.4. Develop algorithms that given a
keyword query and a large collection of data sources, will rank
the data sources according to how likely they are to contain the
answer.

SUB-CHALLENGE 3.5. Develop methods for ranking an-
swers that are obtained from multiple heterogeneous sources
(even when semantic mappings are available).

3.2 Obtaining answers

The most significant challenge to answering queries in datas-
paces arises from data heterogeneity. It is inevitable that when
data sources are authored by different individuals and organi-
zations, they will use different terms to model the same aspects
of a domain. Heterogeneity exists both at the schema level and
the data level.

A data integration system relies on semantic mappings to re-
formulate queries from one schema to another, and significant
amount of research has focused on developing efficient tech-
niques for reformulation, understanding how the complexity
of reformulation depends on the expressive power of the lan-
guage used for semantic mappings [37, 29]. However, datas-
paces being loosely coupled, DSSPs will typically not have
semantic mappings, and even when mappings exist, they may
be partial or approximate. Hence, to answer queries in a datas-
pace we need to shift the attention away from semantic map-
pings. Specifically, we pose the following challenge, followed
by a set of specific proposals on how to approach it.

CHALLENGE 3.6. Develop methods for answering queries
Sfrom multiple sources that do not rely solely on applying a set
of correct semantic mappings. O

Recall that the goal here is best-effort query answering, rather
that providing exact answers. The following are examples of
how to pursue this challenge.

SUB-CHALLENGE 3.7. Develop techniques for answering
queries based on the following ideas, or combinations thereof:

e apply several approximate or uncertain mappings and
compare the answers obtained by each,

e apply keyword search techniques to obtain some data or
some constants that can be used in instantiating map-

pings.

e examine previous queries and answers obtained from
data sources in the dataspace and try to infer mappings
between the data sources. Whenever we have access to
queries that span multiple data sources, try to infer from
them how the sources are related (e.g., the join attributes
should provide some hint of common domains).

In general, one can approach Challenge 3.6 by observing the
way people would go about searching for information in com-
plex information spaces, and trying to generalize from these
patterns and automate them. For example, the following is an

illustration of the second bullet of Challenge 3.7, and could be
a generalization of real interactions. Suppose we are search-
ing for a particular person’s address in a large collection of
databases. We can pose a keyword query over the dataspace
with the person’s name as input. The result may contain tuples
from structured data sources in the dataspace. We then exam-
ine the attribute names of such database tuples, and if we find
attribute names that are similar or related to address, we can
pose a specific query on the corresponding data source.

In parallel with developing new query-answering algorithms,
we need to devise ways to measure their accuracy. Specifi-
cally, we face the following challenges:

SUB-CHALLENGE 3.8. Develop a formal model for ap-
proximate semantic mappings and for measuring the accuracy
of answers obtained with them.

Even when there is no heterogeneity, or there is very little
of it, we still need to perform mappings between data stored
in differing models. For example, multiple data sets may be
using essentially the same terminology, but one is stored in
XML while another in a relational databases or in plain text.
Hence, we face the following challenge:

SUB-CHALLENGE 3.9. Given two data sets that use the
same terminology but different data models, develop automatic
best-effort methods for translating a query over one data set
onto the other.

The typical example of Challenge 3.9, which has been con-
sidered in several works [1, 31, 3] is translating keyword queries
onto relational databases. However, there are many other vari-
ants of this problem, such as the inverse of the above. Specif-
ically, it is often the case that when users pose a structured
query over databases, they also want the system to explore
less structured information to obtain related data. Hence an
interesting problem to consider is to try to extract from a SQL
query a keyword query to pose to an IR-style engine.

4. DATASPACE INTROSPECTION

By its very nature, data in a datapsace will be uncertain and
often inconsistent. The aforementioned best-effort query an-
swering mechanisms will introduce additional uncertainty to
query answers. Furthermore, answers may differ depending
on which level of service we require in terms of latency and
completeness. Hence, it is crucial that a DSSP be able to in-
trospect on the answers it presents to its users, and specify the
assumptions and lineage underlying them. This section de-
scribes several challenges concerning dataspace introspection.
We begin in Section 4.1 by discussing introspection w.r.t. un-
certainty, inconsistency and lineage, and then describe intro-
spection more generally in Section 4.2.

While our emphasis here is on introspection for DSSPs, we
argue that it is crucial for traditional database systems. In fact,
some of the topics we discuss below have initially been inves-
tigated in the context of traditional databases. The difference
is, however, that while in a traditional database introspection is
a feature that is nice to have, in DSSPs it becomes a necessity.

4.1 Lineage,uncertainty and inconsistency

The main point we make in this section is that lineage, un-
certainty and inconsistency are highly related to each other and
that a DSSP should have a single mechanism that models all
three. Specifically, it is often the case that inconsistencies can
be modeled as uncertainty about which data value of several
is correct. Both uncertainty and inconsistency need to be ul-
timately resolved, and lineage is often the only way of doing
So.

Our point is not at all a completely new one. The relation-
ship between uncertainty and lineage has recently formed the
foundation for the Trio Project [7, 46], and the need to man-
age inconsistency along with lineage is one of the main idea
underlying the Orchestra Project [33, 44].

We briefly recall the main concepts proposed for modeling
uncertainty, inconsistency and lineage. We then discuss some
of the challenges that arise in modeling them as in a single
formalism. In what follows we refer to the ability of a DSSP
to introspect about lineage, uncertainty and inconsistency as
LUI intrws‘pecti()n.l

4.1.1 Uncertain databases

Uncertainty arises in data management applications because
the exact state of the world is not known. The goal of an un-
certain database is to represent a set of possible states of the
world, typically referred to as possible worlds. Each possible
world represents a complete state of the database. Hence, a
traditional database represents a single state of the world.

Several formalisms have been proposed for uncertain databases [2,

6, 17,27, 32, 36]). We briefly illustrate three such formalisms
that will highlight some of the challenges we address later.
We illustrate the formalisms with an example where structured
data is extracted from unstructured text, one of the common
sources of uncertain data in practice.

A very simple formalism for modeling uncertainty is a-fuples.
An a-tuple differs from an ordinary tuple in two ways. First,
instead of having a single value for an attribute, it may have
several values. (For now, we will consider only a finite num-
ber of values). Second, the tuple may be a maybe-tuple. As an
example, consider the following two tuples:

(Karina Powers, { 345-9934 | 345-9935})
(George Flowers, 674-9912) ?

The first tuple states that the phone number of Karina Pow-
ers is one of two values, whereas the second tuple is not sure
whether George Flowers has a phone number (but if he does,
the number is certain). Hence, these two tuples represent 4
possible states of the world.

A-tuples are easy to comprehend and to visualize. When
uncertainty is limited to values of certain attributes, a-tuples
captures it well. However, a-tuples are not closed under rela-
tional operators [17]. For example, the result of the join of two
relations with a-tuples cannot necessarily be represented by a
set of a-tuples.

'L UI stands for Lineage, Uncertainty and Inconsistency.

A slightly more general formalism is x-fuples (recently stud-
ied in [7]). An x-tuple is simply a set of ordinary tuples,
meant to describe different possible states, and they too can
be marked as maybe-tuples. As an example, consider the fol-
lowing x-tuple, where the second column is the person’s work
phone and the second is the work fax:

(Karina Powers, 345-9934, 345-9935)|
(Karina Powers, 345-9935, 345-9934)

The x-tuple represents the fact that we’re not sure which
number is the work phone and which is the fax, and represents
two possible states of the world. While x-tuples are more pow-
erful than a-tuples, they are still not closed under relational
operators.

Finally, we illustrate c-tables [2] with the following exam-
ple.

Karina Powers | 456-3214 | z =1
Karina Powers | 654-1234 | = # 1
Karina Powers | 456-4444 | z # 1

C-tables rely on assignments to variables to determine the
possible worlds of the database. Any consistent assignment of
the variables yields a possible world. In the example above,
there are two worlds, depending on the value of z. If it is
1, then only the first tuple is in the database. If x is not 1,
then the second and third tuples are in. Hence, we can model a
constraint saying that if a particular tuple is not in the database,
then two other ones must be.

C-tables are closed under relational operators. In fact, c-
tables can be shown to be complete. That is, given any set of
possible worlds S of a schema R, there exists a database of
c-tables Dg whose possible worlds are precisely S. The dis-
advantage of c-tables is that they are a bit harder to understand
as a user. Furthermore, checking whether a set of tuples I is a
possible world of D, is known to be NP-complete.

4.1.2 Inconsistencies in databases

Inconsistent databases are meant to handle situations in which
the database contains conflicting data. The most common type
of inconsistency is disagreement on single-valued attributes of
a tuple. For example, a database storing the salary of an em-
ployee may have two different values for the salary, each com-
ing from different sources.

The key idea underlying inconsistent databases is to con-
sider the different possible repairs of the database [5]. A re-
pair is a minimal change that results in consistent database.
For example, if we have two tuples specitying the salary of an
employee, then removing either of them will result in a con-
sistent database. Hence, a database may have multiple repairs.

Herein lies the close relationship between uncertainty and
inconsistency. Inconsistency can be viewed as being uncer-
tain about which of the conflicting values is correct. The set
of possible worlds corresponds to the different repairs of the
database. In the example of disagreement on non-key attributes,
the uncertainty can be expressed as a-tuples.

4.1.3 Modeling data lineage

The lineage of a tuple explains how the tuple was derived to
be a member of a particular set. We distinguish internal lin-
eage from external lineage. Internal lineage applies to tuples
in answers to queries — the lineage specifies how a tuple was
derived from other tuples in the database. External lineage ap-
plies to tuples that were inserted into the database — the lineage
refers to the external sources or processes by which they were
inserted.

For internal lineage, there is often a rather obvious defini-
tion of lineage, which can be defined in terms of the proof
tree of a tuple. For example, for conjunctive queries (or even
datalog queries without union) there is a unique proof tree for
every resulting tuple under multi-set semantics. The lineage
function maps a tuple to the tuples in the leaves of its proof
tree.

For queries with union, the representation of a proof tree
is more complicated because it includes OR nodes, but it is
still possible to define a natural lineage function. However, for
queries with negation or aggregation, there is no single obvi-
ous definition of lineage. (For discussions of possible lineage
functions in previous literature see [8, 10, 13, 14, 38].)

4.1.4 LUI Introspection

A DSSP should provide a single unified mechanism for mod-
eling uncertainty, inconsistency and lineage. Broadly, the chal-
lenge is the following:

CHALLENGE 4.1. Develop formalisms that enable model-
ing uncertainty, inconsistency and lineage in a unified fashion.
O

‘We now outline some more specific challenges in this vain.

The relationship between uncertainty and inconsistency is
fairly obvious: inconsistency often boils down to being uncer-
tain about which state of the world is the correct one. Hence a
specific challenge is the following:

SUB-CHALLENGE 4.2. Develop formalisms that capture
uncertainty about common forms of inconsistency in databases.

Ideally, existing formalisms or minor variations on them
will be appropriate. Furthermore, since inconsistency leads to
a very special type of uncertainty (guided by the set of repairs
of the database), the uncertainty formalism should be able to
leverage that special structure. A particular challenge here will
be to understand the kinds of LUI that arise in highly hetero-
geneous environments.

We claim that lineage plays an important role in resolving
uncertainty and inconsistency. The formalisms for represent-
ing uncertainty only tell us what are the possible states of the
world, and will sometimes assign probabilities to each possi-
ble world. However, in many cases the only way to resolve the
uncertainty is to know where the data came from or how it was
derived.

Our goal is that a single formalism should be able to specify
all of the following statements:

e Joe’s age is either 42 or 43

e The probability that Joe is 42 is 0.6 and that he is 43 is
0.4

e According to source A, Joe is 42, and according to source
B heis 43

e According to source A, whose probability of being cor-
rect is 0.6, Joe is 42, and according to source B, whose
probability of being correct is 0.4, he is 43.

In fact, web-search engines already unify uncertainty and
lineage in a simple way. Answers returned by the engine are
ranked in some way (corresponding to uncertainty about the
relevance and the quality of the answer), but they invariably
provide the URL of the answers and a snippet, corresponding
to the lineage information. Users take into consideration both
the ranking and the URL when they decide which links to fol-
low.

One of the main reasons we want to unify lineage and uncer-
tainty is to reason about relationships between external sources
and their effects on answers. To achieve that, we have the fol-
lowing challenge:

SUB-CHALLENGE 4.3. Develop formalisms for represent-
ing and reasoning about external lineage.

As an example, we would like to represent the fact that two
sources are independent of each other and take that into con-
sideration in query answering.

To combine uncertainty and lineage, we have the following
challenge, initially addressed in [7]:

SUB-CHALLENGE 4.4. Develop a general technique to ex-
tend any uncertainty formalism with lineage, and study the
representational and computational advantages of doing so.

Knowledge of lineage may constrain the set of possible worlds
of a database, and therefore may affect the complexity of query
answering.

The key aspect of achieving Challenge 4.4 is that the ob-
ject to which we attribute uncertainty must match the one to
which we attribute lineage. Lineage is typically associated
with individual tuples in the database or entire data sources,
and hence, as shown in [7], it is fairly natural to extend x-
tuples with lineage information. A-tuples, however, associate
uncertainty with attribute values, and therefore the associated
lineage needs to be attached to attribute values. In the case of
c-tables, the situation is trickier, since variables create com-
plex dependencies among the tuples. Roughly, lineage can
possibly be associated with particular choices for values of the
variables in the table. Hence, lineage would be associated with
(1) values of variables, and (2) how values of variables propa-
gate to determine the values of other variables.

Uncertainty on views

The aforementioned challenge leads to a more general issue
with modeling uncertainty. Currently, uncertainty formalisms
associate uncertainty with a single schematic construct: tuples
in the case of x-tuples and attribute values in the case of a-
tuples. Therefore, the choice of database schema and normal-
ization limits the kinds of uncertainty we can express. Con-
sider the example of extracting the tuple from unstructured
data.

(Karina Powers, 123 Main St., 345-9934)

Suppose we want to associate a probability of 0.7 with this
tuple, given our confidence in the extraction. However, sup-
pose we are more confident of our name extraction, and would
like to attach a probability of 0.9 to the first attribute of the tu-
ple. There is currently no way of associating difference levels
of uncertainty with different parts of the tuple.

We propose to attach uncertainty with tuples in views. In
our example, we would be able to associate a higher probabil-
ity with the projection of the tuple on the first attribute. Note
that the views need not be materialized. The challenge can be
summarized as follows.

SUB-CHALLENGE 4.5. Develop formalisms where uncer-
tainty can be attached to tuples in views and view uncertainty
can be used to derive uncertainty of other view tuples.

An excellent first step towards this challenge is described
in [16]. Beyond the basic results, we need to identify more
tractable cases for such query answering. In addition, views
can be used to model probabilistic integrity constraints that in-
duce a probability distribution on the data. Reasoning with
such views is an exciting challenge. Several Al formalisms
(e.g., probabilistic relational models (PRMs) [35, 25]) were
developed to model probabilistic constraints on collections of
objects and relationships between them. We need a good un-
derstanding of the spectrum of formalisms between probabilis-
tic views to probabilistic relational models.

4.2 Finding the right answers

The ability to introspect about data and query answers raises
the next natural question: what are good answers to a query.
Candidate answers can differ along multiple dimensions, in-
cluding:

e relevance to the query,

e certainty of the answer (or whether it contradicts an-
other)

e completeness and precision requested by the user,
e maximum latency required in answering the query.
Hence, broadly, we face the following challenge:

CHALLENGE 4.6. Define metrics for comparing the qual-
ity of answers and answer sets over dataspaces, and efficient
query processing techniques. O

A limited version of this challenge is addressed in the con-
text of inconsistent databases — the notion of minimal repair
has been used to define the possible consistent databases clos-
est to the inconsistent one [5].
general theory that trades off all these factors in an applica-
tion independent manner. In many cases, the particular con-

It is unlikely that there is a

text in which queries are being posed will offer more guidance
on these tradeoffs. To enable specifying such preferences, we
pose the following challenge:

SUB-CHALLENGE 4.7. Develop query-language extensions
and their corresponding semantics that enable specifying pref-
erences on answer sets along the dimensions of completeness
and precision, certainty and inconsistency, lineage preferences
and latency.

Note that while we expect users to express these preferences
with some GUI, we still need a language for expressing these
preferences on the backend.

Along with mechanisms for specifying preferences on an-
swer sets, we need methods for reasoning about sets of an-
swers so we can compare among them. Traditionally, sets of
queries were compared by query containment [11]. A query
Q1 is said to contain Q)2 if the answer of ()1 is always a super-
set of the answer to (J2 on any given database instance. The
following challenge extends query containment to the context
of dataspaces:

SUB-CHALLENGE 4.8. Define notions of query contain-
ment that take into consideration completeness and precision,
uncertainty and inconsistency and lineage of answers, and ef-
ficient algorithms for computing containment.

As a specific challenge that ties together Section 4.1 and our
current discussion, consider the following:

SUB-CHALLENGE 4.9. Develop methods for efficient pro-
cessing of queries over uncertain and inconsistent data that
conserve the external and internal lineage of the answers. Study
whether existing query processors can be leveraged for this
goal.

performs some operation on the dataspace, she is telling us
something about its semantic content or about the relationships
between its disparate data sources.

Users (of varying levels) perform a multitude of actions on
dataspaces, such as: asking and refining queries, browsing se-
mantically related data items, creating electronic workspaces
that aggregate related data, and even lower-level actions, such
as copying values from one column of a spreadsheet to an-
other. At a more sophisticated level, the act of creating a
schema (however precise) or schema mappings is also one we
can learn from. Human attention is very scarce, and hence
it is crucial that DSSPs be able to leverage actions that users
perform as a side-effect of their daily activities.

Broadly speaking the challenge we put forth in this section
is the following:

CHALLENGE 5.1. Develop methods that capture users’ ac-
tivities when interacting with a dataspace and analyze these
activities to create additional meaningful relationships between
sources in a dataspace. a

Interestingly, some works argue that human attention is not
scarce and that spare human cycles can be harnessed in in-
teresting ways. For example, von Ahn et al [45] create an
entertaining online game, the side-result of which is massive
annotation of images on the web. Despite the differences in
opinion concerning human productivity, the same principles
are at play in both contexts.

There have been several recent successful examples of learn-
ing from human activities to further semantic integration, fo-
cused mostly on learning semantic mappings between data
sources. Doan et al[18] showed how to learn to map schemas.
In the LSD System the system took a set of mappings from
data sources to a mediated schema as training examples. The
system generalized from these examples and was able to pre-
dict with high accuracy mappings of other sources into that
mediated schema. Dong et al. [20], Chang and He [30], and
Madhavan et al. [40] showed how to analyze large numbers
of schemas or web services to learn properties that enabled
their systems to automatically guess mappings between un-
seen sources. McCann et al [41] took the idea further and
proposed collaboration among large sets of users to create se-

This challenge is already under investigation by several projects [15mantic integration. All of these works offer only one instance

16, 23, 33, 46]. The challenge is to extend these techniques to
formalisms that model lineage, uncertainty and inconsistency,
and to incorporate sophisticated ranking algorithms as part of
query processing.

S. REUSING HUMAN ATTENTION

The key tenet underlying DSSPs is that they should provide
some level of service on a dataspace from the very beginning.
Over time the dataspace should evolve by forming more tight
semantic integration between disparate sources as needed.

This section turns the attention to how the dataspace can
evolve, and argues that leveraging users’ attention as they in-
teract with a dataspace is a crucial and under-utilized element
to success in this endeavor. In a nutshell, every time a user

of the general principle we advocate here: learning from col-
lections of schemas and mappings to produce better schema
matching systems.

The following specific challenge argues that we can learn
from users posing queries:

SUB-CHALLENGE 5.2. Develop techniques that examine
collections of queries over data sources and their results to
build new mappings between disparate data sources.

In Section 3 we described the notion of a task that captures
several actions on the dataspace that have a common goal. A
user may interact with multiple sources while fulfilling a task,
and examining the specific actions is likely to reveal interest-
ing semantic relationships between them. Hence, as a first

step towards Challenge 5.2 we have the following recognition
problem:

SUB-CHALLENGE 5.3. Develop algorithms for grouping
actions on a dataspace into tasks.

Recall that semantic mappings are only one kind of rela-
tionship we may have between sources in a dataspace. Hence,
our goal here is to go beyond the reuse human attention for
creating semantic mappings. Any process that creates new se-
mantically meaningful relationships between data sources is
valuable, including approximate mappings or even clustering
data sources together so a human can later decide whether it is
worth investing additional effort to create more precise map-
pings.

In addition to leveraging users’ actions, the system can also
take a more proactive approach to soliciting useful semantic
information from users:

SUB-CHALLENGE 5.4. Develop methods that examine the
known semantic relationships in a dataspace and generate a
few select questions that can be posed to a user and whose
answer would improve semantic integration most significantly.

An example of this approach was taken in [43], where users
were asked carefully chosen questions that helped the system
reconcile different references to the same real-world object. In
the Machine Learning nomenclature, these techniques would
be a form of active learning.

Finally, we need to consider the formal aspects of reusing
human attention. So far, we lack a formal framework for un-
derstanding work on learning semantic relationships between
sources. The following challenge addresses that:

SUB-CHALLENGE 5.5. Develop a formal framework for
learning from human attention in dataspaces.

The formal framework needs to include at least the follow-
ing components:

e A definition of the specific learning problem. For exam-
ple, we may try to learn a semantic mapping between
two specific data sources, or we may try to learn rules
for mapping any pair of sources in a particular domain.
(In [18] the goal was to learn rules for mapping an arbi-
trary source into a fixed mediated schema).

e In either of the above cases, we need a formalism for de-
scribing approximate semantic mappings and distances
between semantic mappings (i.e., the distance metric for
determining the quality of proposed mappings).

e We need to spell out the space of possible mappings the
learning problem will consider.

e Finally, we need a way of interpreting our training ex-
amples, i.e., a mapping between training examples and
constraints on the space. In the simple case, a train-
ing example is exactly a semantic mapping in the search

space. However, suppose a user writes a pair of queries
over to data sources, but uses the same constant in both
queries. How do we turn that information into some
form of a training example?

As with most theoretical analyses of learning problems that
provide generous upper bounds on the complexity of learn-
ability, we also need to understand which constraints on the
domain and on the training examples making learning easier
in practice.

Acknowledgments

We would like to thank Serge Abiteboul, Phil Bernstein, Mike
Carey, David DeWitt, AnHai Doan, Laura Haas, Zack Ives,
Donald Kossmann, Mike Stonebraker, Dan Suciu, Jeff Ull-
man, Gerhard Weikum, and Stan Zdonik for useful advice and
feedback on previous version of this paper.

6. REFERENCES

[1] Shaul Dar aand Gadi Entin, Shai Geva, and Eran Palmon.
DTL’s dataspot: Database exploration using plain language. In
Proc. of VLDB, pages 645-649, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[3] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das.
Dbxplorer: A system for keyword-based search over relational
databases. In Proc. of ICDE, pages 5-16, 2002.

[4] Sihem Amer-Yahia, Nick Koudas, Amlie Marian, Divesh
Srivastava, and David Toman. Structure and content scoring for
xml. In Proc. of VLDB, pages 361-372, 2005.

[5] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent Query
Answers in Inconsistent Databases. In Proc. of ACM PODS,
1999.

[6] D. Barbard, H. Garcia-Molina, and D. Porter. The Management
of Probabilistic Data. IEEE Trans. Knowl. Data Eng., 1992.

[7]1 O.Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. The
symbiosis of lineage and uncertainty.
http://dbpubs.stanford.edu/pub/2005-39, 2005.

[8] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya. An
annotation management system for relational databases. Proc.
of VLDB, 2004.

[9]1 Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword searching and
browsing in databases using BANKS. In Proc. of ICDE, pages
431-440, 2002.

[10] P.Buneman, S. Khanna, and W. Tan. Why and where: A
charaterization of data provenance. Proc. of ICDT, 2001.

[11] A.K.Chandra and P.M. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing,
pages 77-90, 1977.

[12] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum.
Integrating db and ir technologies: what is the sound of one
hand clapping. In Proc. of CIDR, 2005.

[13] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. VLDB Journal, 2003.

[14] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view
data in a warehousing environment. ACM TODS, 2000.

[15] N. Dalvi and D. Suciu. Efficient Query Evaluation on
Probabilistic Databases. In Proc. of VLDB, 2004.

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

N. Dalvi and D. Suciu. Answering Queries from Statistics and
Probabilistic Views. In Proc. of VLDB, 2005.

A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working Models for Uncertain Data (to appear). In Proc. of
ICDE, April 2006.

Anhai Doan, Pedro Domingos, and Alon Halevy. Reconciling
schemas of disparate data sources: a machine learning
approach. In Proc. of SIGMOD, 2001.

Xin Dong and Alon Halevy. A Platform for Personal
Information Management and Integration. In Proc. of CIDR,
2005.

Xin (Luna) Dong, Alon Y. Halevy, Jayant Madhavan, Ema
Nemes, and Jun Zhang. Similarity search for web services. In
Proc. of VLDB, 2004.

S. T. Dumais, E. Cutrell, J. J. Cadiz E., G. Jancke, R. Sarin, and
D. C. Robbins. Stuff i’ve seen: A system for personal
information retrieval and re-use. In SIGIR, 2003.

M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: A new abstraction for information management.
Sigmod Record, 34(4):27-33, 2005.

Ariel Fuxman, Elham Fazli, and Renée J. Miller.
Conquer: efficient management of inconsistent databases. In
Proc. of SIGMOD, pages 155-166, New York, NY, USA, 2005.
ACM Press.

Jim Gemmell, Roger Lueder, and Gordon Bell. Living with a
lifetime store. In Workshop on Ubiquitous Experience Media,
2003.

Lise Getoor and John Grant. Prl: A logical approach to
probabilistic relational models. Machine Learning Journal, 62,
2006.

Google.com. Google base. base.google.com, 2005.

G. Grahne. Dependency Satisfaction in Databases with
Incomplete Information. In Proc. of VLDB, 1984.

Lin Guo, Feng Shao, Chavdar Botev, and Jayavel
Shanmugasundaram. XRANK: Ranked keyword search over
XML documents. In Proc. of SIGMOD, pages 16-27, 2003.
Alon Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4), 2001.

Bin He and Kevin Chen-Chuan Chang. Statistical schema
integration across the deep web. In Proc. of SIGMOD, 2003.
Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou.
Efficient ir-style keyword search over relational databases. In
Proc. of VLDB, pages 850-861, 2003.

T. Imielinski and W. Lipski Jr. Incomplete Information in
Relational Databases. Journal of the ACM, 1984.

Z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir. Orchestra:
Rapid, collaborative sharing of dynamic data. In Proc. of CIDR,
2005.

Phokion Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. of ACM PODS, pages 61-75,
2005.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In
Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 580-587, Madison, WI, 1998. AAAI Press.
L. V. S. Lakshmanan, N. Leone, R. Ross, and V.S.
Subrahmanian. ProbView: A Flexible Probabilistic Database
System. ACM TODS, 1997.

Maurizio Lenzerini. Data integration: A theoretical perspective.
In Proc. of PODS, 2002.

A.Y. Levy, R. E. Fikes, and S. Sagiv. Speeding up inferences
using relevance reasoning: A formalism and algorithms.
Artificial Intelligence, 1997.

Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Querying heterogeneous information sources using source
descriptions. In Proc. of VLDB, pages 251-262, Bombay, India,
1996.

Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon
Halevy. Corpus-based schema matching. In Proc. of ICDE,
pages 57-68, 2005.

R. McCann, A. Doan, A. Kramnik, and V. Varadarajan.
Building data integration systems via mass collaboration. In
Proc. of the SIGMOD-03 Workshop on the Web and Databases
(WebDB-03), 2003.

Dennis Quan, David Huynh, and DAvid R. Karger. Haystack: a
platform for authoring end user semantic web applications. In
ISWC, 2003.

S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In SIGKDD, 2002.

Nicholas E. Taylor and Zachary G. Ives. Reconciling while
tolerating disagreement in collaborative data sharing. In Proc.
of SIGMOD, 2006.

Luis von Ahn and Laura Dabbish. Labeling images with a
computer game. In Proceedings of ACM CHI, Vienna, Austria,
2004.

J. Widom. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. In Proc. of CIDR, 2005.

