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 Naive Bayesian networks
◦ Definition

◦ Inference

 Full Bayesian inference and learning

 Bayesian learning using conjugacy: Beta
 Specification

 Inference

 Learning
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An algebraic triviality

A scientific research paradigm

A practical method for inverting causal knowledge to diagnostic tool.
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 Total independence

 Naive Bayesian networks

 Hidden Markov Models
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Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.



Smoking

Lung cancer

S S

LC P(S, LC) P(S, LC) P(LC)

LC P(S, LC) P(S, LC) P(LC)

P(S) P(S)Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S): 

P(LC| S)= ??? P(LC| S)= ??? P(LC)

Odds:
[0,1] →[0,∞]: Odds(p)=p/(1-p)

O(LC| S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence!

OR(LC,S)=O(LC| S)/O(LC| S)
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Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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 Structure prior: p(G)
◦ Specify priors for edges in G

◦ Penalize deviation from a prior structure G0

 Parameter prior: p(|G)
◦  denotes the complete parametrization for G

◦ Specify p(|G) independently for each variable?

◦ Specify p(|G) using a „convenient” (~conjugate) prior?

 Inference
◦ ?
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 Epicurus' (342? B.C. - 270 B.C.) principle of multiple 
explanations which states that one should keep all 
hypotheses that are consistent with the data.

 The principle of Occam's razor (1285 - 1349, sometimes 
spelt Ockham). Occam's razor states that when inferring 
causes entities should not be multiplied beyond necessity. 
This is widely understood to mean: Among all hypotheses 
consistent with the observations, choose the simplest. In 
terms of a prior distribution over hypotheses, this is the same 
as giving simpler hypotheses higher a priori probability, and 
more complex ones lower probability.
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Example from concept learning

X: i.i.d. samples.

n: sample size

H: hypotheses

(hypothesis space)

|H|: cardinality

(number of hypotheses)
bad

The Probably Approximately Correct PAC-learning

A single estimate of the expected error for a given hypothesis is convergent, 

but can we estimate the errors for all hypotheses uniformly well??



 Integration over parameters?
◦ Analytical solution under parameter independence!

◦ Hyperparameter update.

 Bayesian model averaging over exponential 
number of structures?
◦ Analytical solution!

◦ Existence of equivalent „super”-parametrization!!
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 Tree-augmented BNs

 BN-augmented BNs

 Hierarchical BNs

 Multiple parents
◦ Explaining away

 „Context-sensitive” N-BNs



 Later (there is no analytic solutions)
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 Naive Bayesian networks
◦ Definition, Inference

◦ Full Bayesian treatment: LATER


