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Bayes’ rule

An algebraic triviality

vy = PYIX)P(X) (Y [ X)p(X)

X _
M ) > p(Y [ X)p(X)

A scientific research paradigm

p(Model| Data) «c p(Data| Model) p(Model)

A practical method for inverting causal knowledge to diagnostic tool.

p(Cause | Effecl) oc p(Effect| Cause) x p(Cause)




Simple probabilistic models

» Total independence
» Naive Bayesian networks
» Hidden Markov Models



Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Fever=present|Flu=present)=0.6 P(Coughing=present|Flu=present)=0.3
P(Fever=absent|Flu=present)=1-0.6 R(Coughing=absent|Flu=present)=1-0.7
P(Fever=present|Flu=absent)=0A P(Coughing=present|Flu=absent)=0.02
<=absent|Flu=absent)=1-0.02
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Conditional probabilities, odds, odds ratios

P(=S, —LC)  P(S, —-LC) P(=LC)

‘ LC P(=S, LC) P, LC) P(LC)

Probability: P(=S) P(S)
P(LC)
Conditional probabilities (e.g., probability of LC given S):

P(LC| —=S)= ??? P(LC| S)= ??? P(LC)

Odds:

[0,1] —[0,]: Odds(p)=p/(1-p)

O(LC| =S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence! | |
OR(LC,S)=0(LC| S)/O(LC| —=S) 0 05 1
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Naive Bayesian network (NBN)

Decomposition of the joint:
P(Y,X.,...X,)  =PN)[TPCK,IY, X, X4) //by the chain rule
= P(Y)[P(CX,]Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:
PCYP X = POVTTPOGTY) /PG %)

If Y is binary, then the odds
P(Y:1|Xi1,..,Xik) / P(Y:0|Xi1,..,Xik) =P Y=1)/P(Y=O) |_|J P(XijilY:]') / P(X”,lY:O)

p(Flu = present | Fever = absent, Coughing = present)
oc p(Flu = present) p(Fever = absent | Flu = present) p(Coughing = present | Flu = present)




Full Bayesian naive-BN

» Structure prior: p(G)
- Specify priors for edges in G
> Penalize deviation from a prior structure G,

» Parameter prior: p(®|G)

- 0 denotes the complete parametrization for G

- Specify p(®|G) independently for each variable?

> Specify p(®|G) using a ,convenient” (~conjugate) prior?
» Inference

- ?
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Full Bayesian inference by conjugacy

3. Definition. A family F of prior distributions p(0) is said to be conjugate for a class of
sampling distributions p(x|0), if the posteriors p(6|x) also belongs to F.

1. Example. Assume that x denotes the sum of 1s of n independent and identically
distributed (i.i.d.) Bernoulli trials, that is we assume a binomial sampling distribution. If the
prior is specified using a Beta distribution, the posterior remains a Beta distribution with

updated parameters.
p(z|0) = Bin(z|n,0) = (”) 6% (1 — )" (13)
I
F s 16’
p(6) = Beta(a.3) = 01— 6P where c = —F((CC:);‘_(S)) (14)

0 |6

p(flz) = p—( )f(? ) = c’@“_ler(l — 9)'6_1+”_“‘" = Beta(la+x.8+n —x)
Pl

In general a conjugate prior is updated to posterior using only an appropriate statistics of the
observations to update its parametrization. It shows that the parameters frequently has an
infuitive interpretation based on observations, that is in the prior specification the parameters
corresponds to real or virtual past observations.
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The Dirichlet distribution

3. Example. Assume that the observed sequence D,, = {X;;i =1, 2..., n} contains
I.i.d. multinomial samples with L discrete values. The prior is a Dirichlet prior with
hyperparameters o« = «vq,....ap anda, =), a;.

I'(a.)

p(f) = Di(ax) = ¢ 9%~ \where c = ———7
];I H?; F(Qi)
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Principles for induction

» Epicurus' (3427 B.C. - 270 B.C.) principle of multiple
explanations which states that one should keep a//
hypotheses that are consistent with the data.

» The principle of Occam's razor (1285 - 1349, sometimes
spelt Ockham). Occam's razor states that when inferring
causes entities should not be multiplied beyond necessity.
This is widely understood to mean: Among all hypotheses
consistentwith the observations, choose the simplest. In
terms of a prior distribution over hypotheses, this is the same
as giving simpler hypotheses higher a priori probability, and
more complex ones lower probability.




Bayesian inference with multiple
models

Assume multiple models M; = (S;, #;) with prior p(M;) 1 =1,..., M.
The inference p(() = q|E = ¢) can be performed as follows:

p(qle) = 21, mp(q, Mile) _1,..mP(q|M;, e)p(M;le)
Note that p(M;|e) is a posterior over models with evidence e:

p(e|M;)p(M;)
ple)

I.e., the evidence e reweight our beliefs in multiple models.

p(M;le) = x ple|M;)p(M;)

The inference is performed by Bayesian Model Averaging (BMA).
Epicurus’ (342(?) B.C. - 270 B.C.) principle of multiple ex-
planations which states that one should keep all hypotheses that
are consistent with the data.
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Bayesian model averaging

Beside models, assume N multiple complete observations D).

The standard inference p(Q) = q|E = ¢, Dy) is defined as:

p(qle, Dn) = 2iz1._mp(q, Mile, Dn) = 2iz1.up(q| Mi, e, Dn)p(Mile, Dy)

Because p(q|M;, e, Dy) = p(q|M;, ) and p(M;|e, Dy) =~ p(M;|Dxy):
p(gle, Dy) = 2i—t,...] 1p(q| M, €)p(Mi| D)
where again p(M;|Dy) is a posterior after observations Dy

p(;DN ‘ Jlrz)p(:\lr?)

5. p[lpﬁrlflfi)p(:ﬂfg) .

p(M;|Dy) = o(e)
ple likelihood — prior

l.e., our rational foundation, probability theory, automatically includes
and normatively defines learning from observations as standard Bayesian

inference!
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The Probably Approximately Correct PAC-learning

A single estimate of the expected error for a given hypothesis is convergent,
but can we estimate the errors for all hypotheses uniformly well??

Example from concept learning

X: 1.I.d. samples.
n: sample size H

H: hypotheses
(hypothesis space)

|H|: cardinality

(number of hypotheses)

Hyad




Full Bayesian inference with N-BNs
using complete data

» Integration over parameters?
- Analytical solution under parameter independence!
- Hyperparameter update.

» Bayesian model averaging over exponential
number of structures?

> Analytical solution!
- Existence of equivalent ,super’-parametrization!!
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Extensions of N-BNs

» Tree—augmented BNs
» BN-augmented BNs
» Hierarchical BNs
» Multiple parents
- Explaining away
» ,Context-sensitive” N-BNs

.



Inference and learning using
incomplete data?

» Later (there is no analytic solutions)
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Summary

» Naive Bayesian networks
- Definition, Inference
> Full Bayesian treatment: LATER
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