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Why do we care about variations?

APERCTED fiomua underlie phenotypic
differences
cause inherited

! ! ! ! diseases

AFFECTED NURMAL AFFECTED NORMAL
female

allow tracking ancestral
human history
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Global sequence alignment

The best alignment over the entire length of two sequences

Suitable when the two sequences are of similar length, with a
significant degree of similarity throughout.

Example:
SIMILARITY

T
PIL-LAR-——-—



Local sequence alignment

Involving stretches that are shorter than the entire sequences,
possibly more than one.

Suitable when comparing substantially different sequences,
which possibly differ significantly in length, and have only a
short patches of similarity.

For example, the local alignment of SIMILARITY and
PILLAR:

I-LAR

RN
ILLAR



Alignment "by eye"

* Consider the "best" alignment of ATGGCGT

and ATGAGT
ATGGCGT

e
ATG—-AGT

* |ntuitively we seek an alignment to maximize
the number of residue-to-residue matches.



A mathematical framework

e Sequence alignment is the establishment of
residue-to-residue correspondence between
two or more sequences such that the order of
residues in each sequence is preserved.

* A gap, which indicates a residue-to-nothing
match, may be introduced in either sequence.

* A gap-to-gap match is meaningless and is not
allowed.



The scoring scheme

* Given two sequences we need a number to associate with
each possible alignment (i.e. the alignment score = goodness
of alignment).

 The scoring scheme is a set of rules which assigns the
alignment score to any given alignment of two sequences.

1. The scoring scheme is residue based: it consists of residue
substitution scores (i.e. score for each possible residue
alignment), plus penalties for gaps.

2. The alignment score is the sum of substitution scores and gap
penalties.



A simple scoring scheme

Use +1 as a reward for a match, -1 as the penalty for a
mismatch, and ignore gaps
The best alignment "by eye" from before:

ATGGCGET
ATG-AGT score:+1+1+1+0-1+1+1=4

An alternative alignment:

ATGGCGT
A-TGAGT score:+1+0-1+1-1+1+1=2



Gaps

So far we ignored gaps (amounts to gap penalty of 0)
A gap corresponds to an insertion or a deletion of a residue

A conventional wisdom dictates that the penalty for a gap
must be several times greater than the penalty for a mutation.
That is because a gap/extra residue

— Interrupts the entire polymer chain

— In DNA shifts the reading frame



Gap initiation and extension

 The conventional wisdom: the creation of a new gap should
be strongly disfavored.

 However, once created insertions/deletions of chunks of more
than one residue should be much less expensive (i.e.
insertion of domains often occurs).

 Asimple yet effective solution is affine gap penalties:

y(n)=—o0—(n—-1e



Affine gaps: a physical insight

* Affine gaps favor the alignment:

ATGTAGTGTATAGTACATGCA
ATGTAG——————— TACATGCA

Over the alignment:
ATGTAGTGTATAGTACATGCA
ATGTA——-G——TA—-——CATGCA

e Exactly what we want from the biological
viewpoint.



How do we find the best alighment?

Brute-force approach:

— Generate the list all possible alighments between
two sequences, score them

— Select the alignment with the best score

The number of possible global alignments between two
sequences of length N is

22N
N

For two sequences of 250 residues this is ~10'4°




How do we find the best alighment?

Global sequence alignment: The Needleman & Wunsch
algorithm

Local sequence alignment: The Smith & Waterman algorithm
Features

— Both are based on dynamic programming
e Break the problem into smaller subproblems.
* Solve the smaller problems optimally.

* Use the sub-problem solutions to construct an optimal solution for the
original problem.

— Optimal; guaranteed to find the best solution

— O(NM) running time and memory usage



Short-read alignment in NGS

Program  Algorithm SOLID Long* Gapped PE® QF

Bfast hashing ref. Yes Mo Tes Yes No
Bowtie FM-index Yes Mo MNo Yes Yes
BWA FM-index Yes* Yes*  Yes Yes No
MAQ hashing reads Yes Mo Yes' Yes Yes
Mosaik hashing ref. Yes Tes Tes Tes MNo
Movoalign® hashing ref. No Mo Tes Yes Yes

Work well for Sanger and 454 reads, allowing gaps and clipping
®Paired end mapping. "Make use of base quality in alignment. ‘BWA
trims the primer base and the first color for a color read. "Long-read
alignment implemented in the BWA-SW module. 'MAQ only does
gapped alignment for lllumina paired-end reads. #Free executable for
non-profit projects only



Algorithms based on hash tables

e BLAST Search Space

N
o

Sequence 2

| Mlignments

\

Gapped lignment \

Sequence 1

Three steps:
1. Seeding

2. Extension
3. Evaluation
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Algorithms based on hash tables

Improvement on seeding: spaced seed
seed: 111010010100110111

11 matches, 55% more sensitivity
for two sequences of 70% similarity

Eland (reads, 2 mismatches)
SOAP (ref., 2 mismatches)
MAQ (reads, k mismatches)



Algorithms based on hash tables

* Improvement on seeding: gq-gram filter, multiple
seed hits

The occurrence of a w-long query string with
at most k differences, the query and the w-long
database substring share at least (w+1)-(k+1)q
common substring of length q.

SHRiIMP
RazerS
SSAHA?2, BLAT (long-read alignment)



Algorithms based on prefix/suffix tries

e Exact matches => inexact matches

e Burrows-Wheeler transform of the reference
sequence
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Suffix array interval, exact matching:
backward search

R(W) = min{k: W is the prefix of Xg,)
R(W) = max|k: W is the prefix of X5}

Let Cla) be the number of symbols in X[0, n—2] that are lexicographically
smaller than ac & and (Na. i) the number of occurrences of a in B[O, 1].

RiaW) = Cla)+Da, R(W)—-1)+1
RiaW) = Cla)+Oia, RIW))

*BWA, BWA-SW
*Bowtie
*SOAPV2
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Using base quality in alighment
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Variant calling - SNPs
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/ \ e ook at multiple sequences from

TCTGACCAATCTAARARTACCTETEATTAA :
TCTGACCHATCTAACAATACCTGTGAT TAR the same genome region
TCTGACCAATCTAACAATACCTETGAT TAA

TCTGHECCAATCTAAARATACCTGTGAT TAA
tc =t tacctst

TTLGATMCCTLT

e use base quality values to decide if TTGATTCCTGT
mismatches are true polymorphisms or

sequencing errors TLAARSEIAAT T
TGAARA GARATT




SNP variant callers

SAMTools
GATK
VarScan
BreakDancer



Structural variants

Polymorphisms that change the structure of the genome,
including all insertions, deletions and inversions.

Categories:

— Copy-number variants: insertions, deletions
— Copy-count invariant: inversions, translocations

Quality of discovery methods:
— Sensitivity, specificity

— Location of breakpoints

— Variant’s size

— Change in copy count



Structural variant discovery with NGS

1. Detect signatures

Patterns of paired-end mappings (PEMs) and/or
read depth (RD) that are created by structural

variations.
2. Call the underlying variant
Different events => different signatures

Noise (sequencing errors, insert size distribution,
ambiguous mapping, sequencing bias, etc.) =>
many false positives => statistical significance



Signatures based on PEM
Basic insertion

/[ \.

A

Donor

Reference



Signatures based on PEM
Basic insertion

* A mate pair that spans an isolated
insertion event maps to the
corresponding regions of the

reference genome, but the mapped /\t
distance is smaller than the insert Donar —
size. - \/

* The size of insertion must be smaller U

than the insert size.

* Does not indicate the inserted
segment.



Signatures based on PEM
Basic deletion

Reference



Signatures based on PEM

Basic deletion

* A mate pair that spans an
isolated deletion event
maps to the
corresponding regions of
the reference genome, but
the mapped distance is
greater than the insert
Size.

Sk



Signatures based on PEM
Basic inversion

FAWAN

Donor

Reference



Signatures based on PEM
Basic inversion

* A mate pair that spans
either (but not both) of its
breakpoints maps to the

reference genome with the /—\r /_\\,,r
orientation of the read,

lying within the inversion, N 50

flipped.

 Two mate pairs form this
basic inversion signature.



Signatures based on PEM
Linking signature

Consider: two distant regions of the
reference genome that are adjacent in the
donor.

A mate pair spanning the donor’s breakpoint
maps with a distance much greater than the
insert size.

The two spanning mate pairs that are closest
to the breakpoint form a linking signature.



Signatures based on PEM
Linked insertion

/\[\é /\[\é
A C B

<« <

Donor

Reference



Signatures based on PEM
Linked insertion

 The inserted sequence is
present elsewhere in the
reference genome.

* Two linking signatures where —/A—Y\— /ﬁf—

the linked regions are close

to each other. % E z :-,; =

 The inserted region can be
identified.
(if not very large)

1'-LI.|



Signatures based on PEM
Everted duplication

Donor

Reference




Signatures based on PEM
Everted duplication

 Aregion of the reference
genome has been tandemly

duplicated in the donor.
e The order of the mates is e— /&'
reversed while the orientation

stays the same. _®/ p—

Only novel tandem duplications
are detectable.



Signatures based on PEM
Hanging insertions

Donor



Signatures based on PEM
Hanging insertions

* Insertion of novel genomic segment:

One read of a mate pair maps to the
reference genome while the other read ,.-' E
does not. - .

* With de novo assembly of the hanging
b
reads one can reconstruct a small v

'

inserted segment (if it is substantially
larger than the insert size, it will not
cover the entire insertion).



Signatures based on PEM
Anchored split mapping

Donor

AN
/\

Reference



Breakpoint identification
Anchored split mapping

Deletion breakpoint: a prefix and suffix of a
read map to different locations.

Detectable with longer reads. i “:
One of the mates maps to the reference and Thonoy

the other has a split mapping with one of its

parts about 1 insert size away. o = T

Base pair precision. U

Deleted region can not be too large.



Signatures based on PEM
Anchored split mapping

JAY

Donor

Reference




Breakpoint identification
Anchored split mapping

* Insertion of a few base pairs: the split read
will have a prefix and suffix mapping to i ‘:
adjacent locations, and there will be a
middle part of the read (the inserted
bases) that will not be part of either the |

prefix or suffix mapping.
* Detects insertions of only a few base pairs.



Signatures based on
depth of coverage

e Depth of coverage

— Assuming uniform sequencing process => the number of reads
mapping to a region follows Poisson distribution and is expected to be
proportional to the
number of times the

region appears in the (A) Estimation of (B) Event detection
donor. Read Depth

— Aregion that has been
deleted (duplicated)
will have less (more)

~7‘1°¢r'° l i
reads mapping to it. ! Ly
o 0 B 2 ...}. . . o ...‘.--.C_"qu_ :

— ‘Gain/loss’ signature.

180,792 150,812 150,832 150.852 150.872
100 bp



Signatures based on
depth of coverage

 Pros/cons:

The DOC signature does not indicate where an insertion
occured, but rather what duplicate sequence has been inserted;
it is not able to detect insertions of novel sequence.

Directly related to the coverage and to the size of the CNV.

It can detect very large CNVs — the larger the event, the stronger
the signature.

Not able to identify smaller events, that PEM signatures, even
with low coverage, are able to detect.

Much poorer at localising breakpoints.



Variant calling

* @Grouping signatures
— Improve confidence
— Increase the precision of the predicted breakpoints and event size

e Paired-end mapping clusters
e Depth-of-coverage windows

Basic deletion cluster Basic inversion cluster Basic duplication cluster




Paired-end mapping clusters

e Standard clustering strategy (widely used)

— Considers mate pairs that do not have a ‘concordant’ mapping (one with
correct orientation and with a mapped distance within 2-4 s.d. of the mean
insert size).

— Ignores any mate pair that has more than one good mapping.

— Cluster: minimum (usually two) signatures of the same type and with similar
size and location.

e \Weaknesses:

— does not allow the detection of signatures within repetitive regions of the
genome. => ‘soft’ approaches: optimization procedures to assign each mate
pair to a cluster where it will have the most support from other mate pairs

— Can not detect smaller indels than the fixed cutoff for the ‘discordant’
definition => distribution based clustering
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Depth-of-coverage windows

e Standard method:

— Partition the reference into windows so that the
coverage depth is consistent within a window but
has a sharp difference between adjacent
windows.

— Each window correspond to a gain/loss/no event.



Tools

PEMer
SeqSeq

VariationHunter
MoDIL
Pindel

BreakDancer
ABI Tools

Roche RM

Hlumina

e Downloadable

CM Basic deletion

LM Basic insertion

* LRESTRI\ 3]y

M Linking

M Linked insertion

c
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£ & £ 2 | § | windowing strategies
Standard
« Local change-point
analysis
& Soft
Soft, distribution-based
* Standard
" Standard, distribution-
based
. oStandard, distribution-
based
o Standard
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Limitations

Repeating regions
_ow resolution of Depth of Coverage methods

nsert size of library

— Long insert size => detection of larger events (e.g.
basic insertion)

— Short insert size => detection of smaller events

=> Use multiple libraries with varying insert sizes



Bentley et al.

Accurate whole genome
sequencing using reversible
terminator chemistry.
Nature 456, 53-59 (2008)

A. Homozygous 3.6 kb
deletion in NA18507
relative to the reference,
supported by
anomalously spaced
long and short insert
read pairs (orange)
compared to regularly
spaced read pairs
(green).
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B. Deletion in NA18507
relative to the reference,
seen with anomalous
long insert pairs but not
short insert data.
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C. Deletion in NA18507

relative to the reference,
seen with anomalous
short insert pairs but not
long insert data.
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