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History

 Batch systems...
 Spooling...
 Multiprogramming

o 1 processor (execution unit), M tasks
o Task types

• System tasks
• Batch tasks
• On-line tasks (users)

– A user may have multiple independent or dependent tasks
– A single task may be divided to subtasks

o Task/Job pool (combination of tasks the system 
handles)

o To execute tasks resources are needed
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The notion of task
 In case of multiprogramming the aim is to execute the task pool in 

an optimal way
 What does optimal mean?

o Application specific
o Optimal is quite different for a notebook, for a smartphone, for a server, or a 

hard real-time system such as ESP or ABS (in road vehiceles)
o It is a fundamental question, we are going to talk about it a lot...

 In the default case tasks should know nothing about the other 
tasks:
o They run in a virtual machine

• They have their on CPU and memory virtually

o They share the physical resources of the machine, and they need to 
interoperate (synchronize, communicate, etc.)

o Tasks cannot solve these themselves, they need to use the operating system 
(its services) to provide these functionalities
• The OS is the “The great machinator”, or the “Enlightened Dictator” in the 

system
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Example from another fields 1.

 A department in a hospital

 Execution units
o Doctors, nurses, support staff (heterogeneous multiprocessing 

system)

o They are the most valuable resources of the system too!

 Resources (memory, peripherals etc.)
o Rooms, special equipments, etc.

• They are available in limited numbers

• They must be available to tasks according to rules

o Consumables (energy, stb.)
• Medicine, cleaning stuff such as detergents, etc.

• They must be consumed only when necessary

o To access resources you need time
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Example from another fields 2.

 Task: Caring for patients and operating the 
department

 Scheduling, scheduler:
o The head of the department and the leading nurse 

distribute work to staff
• Who does what and when

o What if the task pool changes (fact of life)?
• A task finishes, or the task changes (e.g. the status of a patient 

deteriorates)

• Tasks are rescheduled

o How execution units share resources?

 Luckily, it is drastically simpler for computers

 Generally speaking it is project management!
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Operating systems

 We need to discuss the fundamental concepts

 It will be tiresome, but we cannot avoid it
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Event

 Something happens during the operation of the 
system

 Internal event

o Software interrupt (system call) or exception

 External event

o Hardware interrupt

 Modern operating systems are interrupt driven!

 It is also called “event driven”...
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Task 1.

 The concept of task is used in an abstract way 
here
o Later we are going to introduce the concept of process  

and thread to specify the fine details of operation
oWe may also call it a job
o In some cases the terminology “process” is used, but 

that is somewhat misleading
o Even OS API calls are not really consequent from this 

aspect
• E.g. some OS API have a function called CreateTask()

– They do very different things, some create a thread by definition, 
some other a process

• Never use them based on their name, you have to read the 
documentation, and understand what the actual API call 
does!
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Task 2.

 The task is a fundamental notion in multiprogramming

 Later we will realize the task as processes or a set of 
collaborating processes (implementation)

 A task is the execution of operations in a given order

o It starts, executes instructions sequentially, it ends
• This definition is going to be extended by the notion of threads 

(be prepared!)

o A task is a program under execution:
• Loading, execution, and ending programs are the most important 

function of an operating system, however, we do not deal with that, it is 
a hidden detail implemented by the development system (how to make 
a file that stores an executable program) on the OS (how to load the file)
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Task 3.

 A task is more than a program:
o It is active, not passive! (Virtual CPU)

o It has a state as a state machine:
• Minimalistic states: Run, Waiting, Ready

• In an OS these three states can be 
extended by new OS specific ones

• In case of UNIX and uCOS we will detail 
these states

o There are data structures filled with 
data (based on the life of task):
• Virtual memory (OS + HW)

• Data (global data )

• Stack

• Heap

• Simplified figure on the right side

Stack

Free memory

Heap

Data

Code
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Task states 1.

 Simplified state diagram is shown.

 Typically, on OS has more, OS specific states.
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Task states 2.

 All tasks must be created first...

Created
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Task states 3.

 Most cases tasks are created in the Ready state

 Task in Ready state has all the required resources to run 
except the CPU

Ready
Created
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Task states 4.
 If the CPU is freed, a task in Ready state can go to Run state
 What is the algorithm that decides which of the tasks in Ready 

state goes to Run state?
o CPU scheduling is the solution 

Ready
Created

Gets the CPU-t
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Task states 5.

 The task gets into the Run state, i.e., it runs on the CPU

Ready Run
Created

Gets the CPU
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Task states 5.

 The task gets into the Run state, i.e., it runs on the CPU

Ready Run
Created

Gets the CPU

What runs when no tasks are ready?

Something needs to run, the CPU is on!

•Idle task

•Low priority background task (if the system is priority based)

•The main functionality of the idle task is power management
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Task states 5.

 The task gets into the Run state, i.e., it runs on the CPU

 What can get the CPU away? Let’s examine the 
possibilities!

Ready Run
Created

Gets the CPU
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Task states 6a.

 The task terminates (by calling a syscall or making an exception)

 For error handling another temporary state may be needed…

Ready Run
Created Terminates

Gets the CPU
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Task states 6b.
 The task yields or the CPU is taken

 There is a yield() syscall in nearly all OSs.

 The CPU is taken, preemptive scheduling, we are goung to talk about it...

Ready Run
Created Terminates

Gets the CPU

Yields or CPU

is taken

How the CPU can be taken?

•The task runs. What can take the CPU?

• Only the OS can do it.  It needs to run, but the task runs...

• An incoming interrupt may take the CPU away from the task...

• We need an interrupt (HW, SW, or exception)
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Task states 6c.
 The task may execute a system call but does not gets back the CPU 

immediately
 The OS may decide that it needs time to handle the request, and for that 

time the CPU may be used by other tasks

Ready Run
Created Terminates

Gets the CPU

Yields or CPU

is taken

Due to a syscall it 

goes to waiting state
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Task states 7.

 The task goes into Waiting state for that time

 The task waits in a passive state, it does not use CPU time

Ready Run

Waiting

Created Terminates

Gets the CPU

Yields or CPU

is taken

Due to a syscall it 

goes to waiting state
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Task states 8.

 The event the task is waiting for happens

 The task can go to Ready state, all resources are available 
to run except the CPU.

Ready Run

Waiting

Created Terminates

Gets the CPU

Yields or CPU

is taken

Due to a syscall it 

goes to waiting state

The event happens
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Task states 9.

 All transitions are done on interrupts!

 Modern operating systems are interrupt driven!

Ready Run

Waiting

Created Terminates

Gets the CPU

Yields or CPU

is taken

Due to a syscall it 

goes to waiting state

The event happens

Syscall
Syscall, IT, 
exception

Syscall, 
exception

Syscall, IT, 
exception Syscall, IT, 

exception

Syscall
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Task control block, TCB

 A data structure to store task specific data in the 
operating system

 The OS handles the tasks based on these data structures
o The task may have access to these data structures (most cases it 

can be read but not written).

 What is in it?
• Task ID (Process ID or Thread ID in real implementations)

• State (Ready, Run, Waiting and other OS specific states)

• Program Counter for non-running tasks (context switch)

• CPU Registers (context switch)

• CPU scheduling related task specific information

• Memory related data (virtual memory)
– MMU state  (context switch)

• Access rights (owner, access control list, i.e., ACL)

• I/O status information (used resources and their states)
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Context switch

 When a task goes into Run state it context must be restored 
to let it run on the CPU
o PC and other CPU registers, MMU state, I/O...

 To do that, when a task leaves Run state its context must be 
saved (by this, later we can continue it)

 It can be done only by the OS, but the OS has also a context...

 The context switch is an overhead (CPU time is lost)
o Some CPUs have special instructions to do it fast

o Some CPUs have large number of registers allowing not saving 
registers, but assigning special registers for tasks

o Hyperthreading (marketing name, nothing to do with threads)
• There are multiple processors virtually

• Architectural state is multiplied only (registers, stb.)

• If there is some instruction level parallelism, then multiple arithmetic units 
may be utilizes in parallel (one fixed and one floating point)
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Task scheduling

 Our aim: Select one task from the set of tasks in Ready 
state to put it into RUN state

 Tasks are stored in task queues (job queue) except in RUN 
state
o In its simplest form it may be a FIFO, that stores pointers to TCB

type structures/objects, i.e., most OSs are implemented in 
C/C++

o I.e., there is a Ready queue, a Waiting queue, etc.

o Queuing diagram of scheduling

o Scheduling algorithms operate on this data structures (mostly 
on the Ready queue)

o It is a search problem, and it is NP complete most of the cases

o However, it must be executed in bounded time (hard real-time)
• Overhead must be kept at minimum!



© BME-MIT 2014, All Rights Reserved 27. lap

Time scales of scheduling 1.
 Short-term or CPU scheduling

o Selecting the next running task from the tasks in Ready state
o Typically it runs in every 10-20 ms or more frequently.

 Long-term scheduling (in batch systems most cases)
o We have more tasks that we can handle in parallel
o We let to enter as many tasks into the system we can handle 

efficiently (some tasks are submitted, but waits somewhere)
o It runs in every minutes or so (for low overhead).
o Most cases tasks can be set at specified times (UNIX: cron)
o Example, copy of 3-4 large files on Windows from a disk to 

another one (i.e., from the internal one to an external one)
• 1st approach: parallel copy
• 2nd approach: sequential copy
• Question: Which one is faster, the 1st or the 2nd?
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Time scales of scheduling 2.

 Medium-term scheduling

o Swapping (we are going to deal with it later)

• Tasks in the system have their memory written to the 
permanent storage (HDD)

• More tasks can be stored in memory virtually

• Or one tasks may see more memory physically

o What if the required parts of memory of a task running 
is on the permanent storage?

• It cannot run as long as all the required memory is back in 
physical memory

oMedium-term scheduling controls swapping 
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Even more fundamental terminology 

 We need to introduce even more fundamental 
terminology and definitions...

o Sorry for that, this is necessary!
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Preemptive scheduling

 It is a design decision it the CPU can be taken away from the 
task in Run state

o Preemptive:The OS can take away the CPU from the running task

• Typical in modern operating systems

• The kernel or certain parts of it may not be preemptive, if it is the case real-
time operation may not be guaranteed

– The kernel of modern operating systems are also preemptive

o Non-preemptive or cooperative

• Last example of mainstream operating system: Windows 3.x, MAC OS 1-9

• The running task must yield or execute I/O to let other tasks to run

• The operation of the whole system depends on an application

– Practically on the programmer of that application, not a good idea…

• If the running task is faulty (infinite cycle) the whole system becomes faulty

– Is it an OS at all? 

– Some embedded systems use this model, it is simple, and these systems can be 
tested thoroughly 
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Metrics 1.

 Metric
o Allow us to compare scheduling algorithms

o Watching multiple metrics may make our decision

o A metric has a unit also!

 CPU utilization
o Unit: %

o Time spent in useful work compared to the whole time

o tCPU=tCPU,work+tCPU,admin+tCPU,idle, i.e., administration and idle time 
is lost

o Something between 40-90 % is OK most cases

 %100
,





CPU

workCPU

t

t
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Metrics 2.

 Throughput
o Unit: task/s, job/s, or 1/s

o Task done in  specified time

o System tasks are not counted
• They reduce throughput

o Typical values depend on lot of factors
• Standard benchmarks

• E.g. TPC-X benchmarkok a Transaction Processing Performance 
Council-tól (http://www.tpc.org/)

]/1[
Time

 tasksFinished
s
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Metrics 3.

 Waiting time
o Unit: s

o The time the task spent waiting from entering the 
system until leaving it finished

o Strongly depends on the scheduling algorithm...

o There are very strong statistical variations:
• We have to speak about average waiting time, dispersion of 

waiting time, etc.

• Standard benchmarks are valuable here too

][, sttt runningnonotherreadywaiting 
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Metrics 4.
 Turnaround time

o Unit: s

o The time spent in the system by a task

o Strongly depends on the scheduling algorithm...

o There are very strong statistical variations:

• We have to speak about average turnaround time, dispersion 
of turnaround time, etc.

• Standard benchmarks are valuable here too

waitingexecutionCPU tt ,
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Metrics 5.

 Response time
o Unit: s
o For on-line, interactive tasks
o Time spent from the insertion of the task into the 

system until the first outputs are produced

o Strongly depends on the scheduling algorithm...

o There are very strong statistical variations:
• We have to speak about average response time, dispersion 

of response time, etc.

• This is the most valuable metric for users because the user 
wants to see the output of his/her work ASAP, i.e., he or she 
does not need to idle, but can advance with the work

• Standard benchmarks are valuable here too
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Metrics 6.

 Energy metrics

o Unit: for example Ws/task (TPC-Energy)
• How much energy is used to finish a standard task?

o Energy consumption is in the center of interest

o Strongly influenced by the other metrics
• Computing power, price, energy use?

• E.g. Compare Intel ATOM to a C2D notebook manufactured? Which one 
is the better?

o There are very strong statistical variations here also

o Energy aware scheduling and benchmarks under 
development
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Requirements for scheduling 
 Quantitative properties
 Real-time operation of the scheduler

o Low overhead…
 Optimization is done using a target function 

o The target function combines multiple metrics into a scalar 
which can be used to compare algorithms according to 
complex requirements

o E.g., the weighted linear combination of metrics may be 
used

 For evaluation we may use mathematical models, 
simulation or measurements

• Reproducible and typical load must be administered to the system 
(benchmark)

• There will be statistical variations.
– Primarily due to speculative execution in the system (cache, etc.)
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Qualitative properties

 Expected properties (cannot be quantitative or 
very hard to make quantitative):
o Fairness

o No starvation

o Predictability, determinism

o Low overhead

o Maximum throughput, low waiting times

oMaking decisions based on resource use
• Using widely used resources (use and let others use it)

• Using rarely used resources (free)
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Requirements 2.

 Hard or soft real-time scheduling of tasks
 Priority

o Priority  Soft real-time (typical fault) 

o We are going to deal with it soon!

 Graceful degradation
o If the load of the system reaches knee capacity the system 

should not collapse, but provide reduced services (due to 
system overheads).

o System should loose functionality gradually in case of overload
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Other aspects

 Static or dynamic scheduling
o Static:

• All scheduling decisions are made design time (the task pool 
must be known in advance)

• Designing for the worst case

• We do not deal with it, it is used is mission critical 
embedded systems

o Dynamic: The scheduling decision is made run-time
• We use it typically today in modern operating systems

• Dynamic resource sharing

• They are hard to investigate in design-time
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Assumptions (1 CPU)

 We assume the followings from now:
o We have a single execution unit is the system

• In case of a multiprocessor system it is too complex to handle

o Only one task can run one time (1 CPU)

o Ready tasks are stored in a queue (task/job queue)
• In the special case it is a FIFO, but something else in most of the 

cases

o Tasks consist CPU and I/O burst
• Practical experience shows it, and we have measurements also

• CPU burst are shoreter than 10 ms typically

• In between CPU bursts there are I/O bursts to handle I/O

• The actual distribution of CPU and I/O burst depend on the 
application
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 Video file conversion on a machine with 1 CPU 
and limited amount of memory…

CPU and I/O burst example

42. lap

Open 
file, etc.

Loading of 
frames

Conversion
in memory

Writing 
of 

frames

Loading
of frames

Conversion
in memory

Loading startedLoading of video file

started

Writing 
of 

frame
…

CPU burst I/O burst
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First Input First Out (FIFO, FCFS)

 Simplest algorithm:
o The queue is a FIFO (First Input First Output) queue storing 

references to TCBs
• Using the put() function a task can be inserted to the Ready queue

• Using the get() function a task can be picked to Run state

• Also called FCFS (First Come First Serve)

 Non-preemptive
o If the task does I/O, than a new task is picked (I/O burst 

schedules)

 The average waiting time can be large, and strongly 
depends on the CPU and I/O burst of the task
o It also means long response times, so it is not a good choice for 

interactive systems

 Administrative overhead is very low
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Properties of the FIFO algorithm

 More detailed investigation of the time domain 
properties:

 Pure CPU burst:
o Tasks coming later needs to wait for tasks coming earlier

o A long task can hold up task coming after the long task (convoy 
effect)

 Both CPU and I/O bursts:
o If a task has long CPU bursts it can hold up tasks with short CPU 

bursts
• The tasks with short CPU bursts will be finished fast

• The task with the long CPU burst will arrive to the end of the queue fast, 
and when it is scheduled to run, it will hold up the other tasks

• Convoy effect as in the previous simple case.
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Round-robin algorithm

 It is invented for timesharing systems to correct the 
problems of FIFO scheduling

 Better for on-line interactive users

o Better response time than FIFO

o It reschedules tasks independently of the task (it does it work 
based on time)

 Preemptive:

o Practically, it is a FIFO queue augmented with a timer interrupt 
maximizing the length of the Running state of the task
• Quantum or time slice

• 100-1 ms, typically 10-20 ms.

• Primarily for providing acceptable on line response time for interactive 
users
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Single-shot/one-shot timer
 Before running the task the timer is started, after the 

predefined time (time slice) it signals an interrupt and the 
OS can run and make a decision about the running task
o If the task finishes or execute I/O operation (goes to Waiting 

state)
• The OS reschedules the task and the time restarted

o If the task does not finishes in its time slice
• Interrupt comes in and the scheduler (OS) runs
• The Running task goes to Ready state, scheduler runs, pick a new task for 

running, the timer restarted

 In practice, for the shake of simplicity and for time 
keeping purposes a periodic timer may be used
o The implementation is simpler, but the analyses of algorithm is 

complex and its run-time properties are worse
o The periodic timer interrupt can be used to implement the 

system clock, and software timers (that is a must in modern 
OSs)
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Properties of the RR algorithms
 It’s properties depend on the size of the time slice, the statistical 

properties of the CPU bursts of the tasks, and the length of the 
time to do a context switch

 Time slice > Average CPU burst It behaves like the FIFO
o The length of the CPU bursts define the properties

 Time slice  Average CPU burst Normal operating region
o Primarily the time slice defines how long a long task can run in a slot

 Rule of thumb: It is the best if 80% of the CPU bursts are smaller 
than the time slice

 Average CPU burst >> time slice, which is comparable to the length 
of context switch:
o Large administrative overhead

o Because the time slice is 10-20 ms (sometimes 1 ms), which is several 
decades bigger than the length of the context switch, it is not a problem 
today (Was a problem earlier times)
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Priority based schedulers
 Scheduler family, there are large number of them

 Priority = urgency (0 is the smallest or the 
biggest?)

 A priority is assigned to tasks:
o Internal/External priority:

• External priority: An operator assigns the priority

• Internal priority: The OS assigns the priority

o Static/dynamic priorities:
• Static priority: A priority is assigned to the task and that does 

not change during execution

• Dynamic priority: Priority is changed run-time based on the 
performance or other properties of the task

o The combination of it can be also used...
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Dynamic priority assignment

 Assigning priority based on measurable task 
performance:

o The user may assign an initial priority

o And after that the OS computes the priority based on 
the following as example:

• Time domain properties (response time, etc.),

• Memory requirements (size, availability, etc.),

• Used resources,

• CPU and I/O bursts,

• Run-time, planned run-time,

• etc.
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Properties of priority based schedulers
 Generic properties:

o Typically preemptive, but can be non-preemptive also

 Typically not fair, we do not want to be it to be fair (we 
have priorities)...

 Starvation may happen (Is it an advantage or a 
disadvantage?):
o We use it to consider urgance…

o If starvation happen it is due to overload or design error

o High priority tasks can be only a small portion of all tasks, that 
can be run with leaving CPU time for other tasks

o All tasks cannot be important the same way

o Tasks may be aged (e.g. increased priority with increasing 
waiting time)
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Priority based schedulers 1.

 Simple priority based scheduler:
o One task on one priority

o Used in simple embedded operating systems

 Any number of tasks on a priority level:
o With modifications it is used all over in modern OSs

• UNIX, Windows, etc.

o Modifications:
• RR scheduler used if multiple tasks are Ready state on a priority level

• Dynamic internal priority assignment.

 Fundamental problem with the standard priority bases 
schedulers:
o Priority inversion, we are going to talk about it later
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Priority based schedulers 2.

 Shortest Job First (SJF):

o Non-preemptive, the task with the shortest estimated 
CPU burst is selected to Run.

• How we can estimate future CPU bursts of a task?

• Most cases it makes the decision based on previous CPU 
bursts (average of the previous last N bursts, moving 
average, etc.)

• The users may know the algorithm, and try to influence it! 
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Priority based schedulers 3.

 Shortest Remaining Time First (SRTF):
o Preemptive version of SJF

o If a task becomes Ready the OS reschedules

o The time of context switch must be taken into account

o How we can estimate CPU burst?
• The same problem as we faced at the SJF algorithm
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Priority based schedulers 4.

 Highest Response Ratio (HRR):
o It tries to minimize the possibility of starvation

o It is based on the SJF algorithm

o The priority takes into account the waiting time also

o If a tasks waits more its priority increases...

o k defines how waiting is taken into account

Burst time

 time Waitingk   Burst time 


