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1 Introduction

Vibration analysis is a typical application of signal processing in which the path of a signal can be traced from

a physical signal to a computer system. The latter often works without a user interface, connected to the object

to be measured, so the analyzer works as an embedded system.

Vibration analysis is used for a variety of purposes. One common application is the diagnostics of various

machines and equipment. In this case, the condition and possible failure of the measured mechanical system

can be deduced from the power and spectrum of the vibration. Using a priori knowledge, advanced expert

systems can also identify faulty parts, resulting in signi�cant savings (e.g., aircraft engine testing). Vibrating

mechanical systems often emit signi�cant noise into their environment. Harmful noise sources can be localized

with vibration analysis. Vibration analysis can also be used in the design of mechanical structures: by carrying

out measurements on the �nished prototype (e.g., car chassis), the elements exposed to dangerous vibration

loads can be determined, and the construction can be modi�ed. Vibration sensors are also used for acoustic

measurements, e.g., for testing musical instruments.

2 Theoretical Summary

2.1 Vibration Sensors

The exhaustive description of vibration sensors exceeds the scope of a measurement exercise guide. The sensors

do not detect the vibration as such, but the displacement, velocity, and acceleration of the vibrating body, and

within these there are several solutions. These quantities are derivatives of each other, so they can be converted

into each other. A few options are listed below without claiming to be exhaustive.

2.1.1 Displacement Sensors

They are inductive or capacitive sensors, that are rarely used to test vibrations, because a static (non-vibrating)

unit relative to the system to be measured is needed. On the other hand, the laser interferometer has a notable

role in accurate calibration of acceleration sensors.

2.1.2 Velocity Sensors

Here, we only mention the laser vibrometer, which measures the speed of vibration based on the Doppler

e�ect. These are very expensive devices, but their advantage is that they do not interfere with the mechanical

system and do not cause extra weight, which would otherwise lead to the system being out of tune. Another

advantage is that measurements can be made at several points during one measurement, without changing the

measurement setup. They usually include an optical cable, so when the otherwise relatively bulky laser is placed

near the system to be measured, only the optical cable needs to be moved. However, its disadvantage is that

the vibrating surface must re�ect the light. An example of the application of the laser vibrometer is the testing

of combustion engines. The laser beam re�ected from the metal surface of the block has su�cient intensity for

the measurement.

2.1.3 Acceleration Sensors

Acceleration sensors are the most often used type for vibration measurement. The sensors must be placed on

the surface of the vibrating body. One or more seismic masses are placed inside the sensors, which, due to

acceleration, create some signal depending on the given sensor. In the following, we will deal with acceleration

sensors that work on the piezoelectric principle.

1



Figure 1: Conventional acceleration sensor. Base (B), seismic mass (M), piezoelectric crystal (P), bias spring

(S)

Figure 2: Improved acceleration sensors. Base (B), connector (R), seismic mass (M), piezoelectric crystal (P)

2.1.4 Microphones

Microphones detect sound pressure, not vibration, and can only be used indirectly to measure vibration, pri-

marily for qualitative measurements.

2.2 Piezoelectric Acceleration Sensors

Figures 1 and 2 show the structure of the sensors of the Brüel & Kjær company, which is dominant in the given

professional �eld. The more complicated geometry shown in Figure 2 can be achieve higher sensitivity.

The presented sensors all detect acceleration in the vertical direction, in the position shown in the �gures.

The sensor shown in the right side of Figure 2 is a more advanced construction. Compared to the one in the

left, it has a higher resonance frequency and a higher sensitivity for a given seismic mass. We will use sensors

of this design for the measurement.

As a result of deformation, charge accumulates on the surface of the piezoelectric material, which creates

a small voltage on the sensor's capacitance. This �capacitor� discharges slowly due to leakage currents, so

these acceleration sensors are not directly suitable for measuring constant acceleration (e.g., acceleration due

to gravity). A typical curve of the transfer function of an acceleration sensor in the frequency domain can be

seen in Figure 3. The smallest frequency included in the speci�cation is usually 1 Hz, the largest depends on

the resonance frequency, typically 10..20 kHz. The resonance frequency is the mechanical resonance frequency

of the sensor, usually 20..50 kHz. In the speci�ed range, the �uctuation of the magnitude is a few percent.

The sensitivity of the sensor is typically 10..100 pC/g. The charge (voltage) appearing at the output is not

suitable for further processing, it must be ampli�ed. In the �rst step, the so-called a charge ampli�er is used,

which converts the charge appearing on the crystal into a (loadable) voltage. A charge ampli�er is basically an

operational ampli�er with negative feedback through a capacitor. Due to the small charge, an ampli�er with a

high input resistance must be used, and the sensor signal must also be connected to the input in such a way

that there is as little leakage as possible. The signal of the operational ampli�er can be further ampli�ed with

another voltage ampli�er stage.
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Figure 3: Magnitude response of an acceleration sensor

Accelerometers are supplied with an individual calibration record. It contains the following important data

and characteristic curves:

� geometric, physical data,

� electronic parameters,

� sensitivity,

� transversal sensitivity (typically below 1%),

� amplitude and phase diagram,

� temperature sensitivity,

� resonance frequencies.

2.3 Calibration of Acceleration Sensors (Supplementary Material)

As we have seen, acceleration sensors detect acceleration only indirectly, so calibration is necessary. For this,

known acceleration excitation must be used with high accuracy and the voltage appearing at the sensor output

must be measured. The B&K company speci�es the sensitivity with an accuracy of 10−3 in the calibration

report for each sensor. It is worth considering that it is not a trivial task to excite the vibration sensor with

such precisely known acceleration.

The manufacturer uses a laser interferometer for calibration, which measures the displacement of the sensor.

A sinusoidal vibration with a precisely known frequency is produced as excitation, so the acceleration can be

determined with the equations for harmonic motion. (In the case of g acceleration at 100 Hz, the deviation is

25 µm.) Accurate measurement of the voltage of the output signal is a simple task.

In common laboratories, comparative measurement is used for calibration: the sensor to be calibrated is

compared to a more precisely known sensor. Hand-held excitation devices are used for quick calibration, which

generate a given (e.g., g) acceleration with a moderate (a few %) accuracy.

2.4 Processing of Acceleration Signals

Here, we only describe in more detail the methods that we will use during the exercise, the other options are

only mentioned. During the exercise, the basic equations of the discrete Fourier transformation are supposed to

be known, especially the calculation of the resolution, the choice of the correct length, and the use of window

functions.
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Figure 4: Spectrogram

The most common case is when the vibration signal is periodic, and the task is to analyze the components of

the periodic signal. Non-periodic (stochastic) signals are analyzed, e.g., in the case of certain transfer function

measurements, or in the case of signals from several sensors, when a cross-correlation or coherence function is

calculated. If one is looking for low-power, noise-covered components of unknown frequency, one can calculate

a cepstrum instead of a spectrum. However, in some cases, the location of the frequency components is well

known, and the question is how they change. In this case, the spectrum is not scaled in frequency, but in the

number of components. This is the so-called harmonic analysis (order analysis or order tracking). The Wavelet

transform or the Wigner distribution is used to analyze time-varying but dominantly periodic signals. A special

case of the latter is the short-time Fourier transformation, which we will also use.

2.4.1 Calculation of the Spectrogram

The spectrogram shows the change of the absolute value of the spectrum over time. Since three dimensions �

time, frequency, amplitude � must be displayed, a spatial diagram or such a planar diagram is used, on which

the color and intensity of a point on the plane carries the information. Figure 4 shows such a spectrogram, here

in black and white.

The �gure shows the acceleration response of a mechanical system to a logarithmically sweeping triangle

signal. The horizontal axis is time, the vertical axis is frequency. The individual harmonics are clearly visible,

as well as the fact that the higher harmonics quickly leave the analyzed range. You can also see components

of lower intensity and decreasing frequency over time: these show that during the analysis we did not comply

with the condition of the sampling theorem, because the aliasing components seem to be decreasing.

The spectrogram can be calculated as follows. The record must be divided into smaller sections and their

discrete Fourier transform must be concatenated. The frequency resolution determines the number of points

needed, so sometimes too long sections would be needed, during which the signal can change signi�cantly. The

solution is to transform overlapping sections, so the time step will be smaller. (An overlap of 75% is common.)

It can be seen that increasing the time and frequency resolution contradict each other. This problem is improved

by the mentioned Wigner distribution or the Wavelet transformation. Window functions can be used to correct

the errors of the discrete transformation.

MATLAB supports spectrogram calculation with the spectrogram function.
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2.4.2 Calculation of the Steady-State Spectrum

If the vibration signal changes only slightly, it is possible to calculate the spectrum based on a longer record. In

this case, the record can also be cut into smaller sections, but its transformation is averaged in some way (most

often linearly) (Welch method), as a result of which the variance of the calculated spectrum is reduced. If the

overlap of the sections is not greater than 75%, the averaging is performed on the basis of nearly independent

elements, and the variance is divided by N in the case of N elements. However, care must be taken not to use

the complex spectrum obtained with the FFT, but its absolute value for this processing.

MATLAB supports the calculation of the steady-state spectrum with the pwelch function.

2.4.3 Measurement of Frequency Response Function (FRF)

Since we are examining signals from sensors, it is important to clarify what the system is whose transfer

characteristics are being measured. In the case of vibration analysis, we examine a mechanical system, on

which we place the vibration sensor at a speci�c point. Accordingly, the output of the system is displacement,

velocity or acceleration; due to the sensors used in the measurement, we investigate acceleration signals. On the

other hand, the input of the system can be of several types: any signal that results in mechanical excitation.

A measuring hammer is often used, in which a force sensor is placed, the input signal in this case has a

force dimension. Another stimulation option is the application of a so-called shaker, which creates force and

acceleration proportional to the voltage signal applied to its input. Its construction resembles that of an

electrodynamic loudspeaker without its diaphragm. The input can be the voltage of the shaker, but we can

also place a force sensor at the output of the shaker, at the excitation point of the mechanical system. If the

mechanical system itself contains an electromechanical converter, the voltage (current) given to the converter

can also be the input of the system. If the system is characterized by a single FRF, it is also assumed that the

system is linear, or the nonlinear behavior is neglected.

Thus the input and the output signals are given to determine the FRF. By de�nition, the FRF is the ratio

of the Fourier transform of the two signals. However, the implementation of the operation also raises principal

di�culties, but the discussion of this topic far exceeds the scope of an exercise guide. The Fourier transforms

are estimated using a discrete Fourier transform (DFT) based on a �nite record, which has a signi�cant variance

for theoretical reasons (see the previous section), but the signals can also be a�ected by signi�cant measurement

noise. It is also important that the excitation be persistent, i.e. there should be excitation available with a good

signal-to-noise ratio at all frequencies where the FRF is to be determined. For example, if we want to analyze

in the 20 . . . 2000 Hz range and use a shaker with sinusoidal excitation, then the frequency of the excitation

voltage must �cover� this range.

If the persistent excitation is given, the FRF is the ratio of the steady-state spectrum of the output and the

input. In many cases, it is su�cient to determine the magnitude response, i.e. the absolute value of the FRF.

If we know that the spectrum of the excitation signal is constant (white) in the given range, then it is su�cient

to determine the steady-state spectrum of the output, its absolute value will be the magnitude response of the

measured system. The �sweeping� sine signal (chirp signal) or random noise used in previous measurement

exercises has a white spectrum. We will use the latter during the exercise, because it is easy to generate random

noise in the MATLAB program.

2.4.4 Calculation of the Decay Time Constant, Signal Generation (Supplementary Material)

In the following, we consider the case where the parameters of a decaying periodic signal must be calculated.

Figure 5 shows the �rst steps of processing.

The decaying periodic signal is shown in the diagram on the left. We select two sections of this for investi-

gation: one section is located at the beginning of the record, where the signal level is still high, but the initial

transients have already subsided; in the other section, the signal level is de�nitely lower, but has not yet reduced
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Figure 5: Decay time calculation

to the level of the noise in the record. The middle diagram shows the two selected sections. The diagram on

the right shows the spectrum calculated for these two sections.

We assume that the system is linear and that each harmonic component decays exponentially with one time

constant. The frequency of the individual components does not change, therefore the frequency of the peaks in

the diagrams on the right does not change, only their amplitudes do. Since the decay is exponential and the

signal is discrete, it is true that:

Xi(n+ 1) = λiXi(n), λi < 1 (1)

where Xi(n) is the amplitude of the i-th peak at the n-th time instant. Let the amplitude of the ith peak in

the �rst spectrum be Xi,1 and Xi,2 in the second, and the number of samples between the beginning of the two

sections be K. Then λi can be calculated as follows:

λi =

(
Xi,2

Xi,1

) 1
K

(2)

The decaying periodic signal can be �assembled� from its components. A component can be characterized

by its frequency (fi), its initial magnitude (Xi,1), and its discrete time constant (λi). Then the N sample of

the given component is:

xi(n) = Xi,1 sin(2π
fi
fs

n)λn
i , n = 0..N − 1 (3)

The original signal can therefore be approximated as follows:

x(n) ≈ x̂(n) =

I∑
i=1

xi(n), n = 0..N − 1 (4)

During the test and synthesis, we did not determine the phase of the periodic signal component. According to

experience, this does not play a role at �rst approximation.

3 Measurement Setup

During the measurement, two devices must be tested. The sketch of the �rst object is shown in Figure 6.

We will investigate the vibrations of a fan and optionally a bell mounted on a wooden board. The fan is

driven by a mains voltage asynchronous motor, the speed of which can be slightly changed with the help of a

toroidal transformer. There are several threaded holes in the wooden plate, where the vibration sensor can be

attached. The vibration sensor is a B&K 4384 type sensor.

The second object is a model of a rotating machine �xed in a room or larger structure, as shown in Figure 7.

We placed a small speaker in a cardboard box, and a vibration sensor can be attached to the wall of the box
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Figure 6: The �rst object to be measured

d

Figure 7: The second object to be measured

with a screw as shown in the �gure. The rotating machine functions as a vibration generator, which is modeled

by introducing periodic excitation into the loudspeaker. A periodic signal with variable (sweeping) frequency

models an accelerating or decelerating rotation. The setup also includes a rigid plate bent in an �L� shape.

By �ne-tuning the air gap d, it can be achieved that if the wall of the box resonates, the screw hits the plate,

and the hits result in pulses in the vibration signal. The phenomenon is clearly audible in the audio frequency

range. This setup well models an error phenomenon that we also experience in practice, e.g. on a bus. Such

a phenomenon can also lead to damage to the structure, but it is de�nitely unpleasant for the user. The

phenomenon can also be identi�ed from the vibration signal, so it is also suitable for monitoring the state of

the mechanical system.

We use the same sensor for both objects. Take care on the correct connection of the cables to the sensors.

Connect the cable only if the sensor is already in place. Never unscrew the sensor from its place with the cable

still connected!

The acceleration sensor has a charge output, so its signal is ampli�ed with a charge ampli�er. Adjust the

sensitivity on the charge ampli�er based on the sensor's own datasheet. The signal of the charge ampli�er can

be connected to an oscilloscope or a sound card.

The properly conditioned signal is fed to the sound card of a PC for processing. You can make and play

recordings with the Audacity program on the PC. When recording, be sure to select the sampling frequency and

16-bit mode. The recordings can be evaluated under MATLAB, the wav �les can be read with the audioread

function, and a MATLAB vector can be written to the wav �le with the audiowrite function.
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4 Measurement Tasks

1. Place the vibration sensor next to the fan. Start the fan at rated voltage. Record the signal with the

program Audacity and analyze it in MATLAB! Determine the optimal sampling frequency. Based on the

sensitivity of the acceleration sensor and the gain, determine the magnitude of the vibration signal in

m/s2 units as well!

2. By changing the output voltage of the toroidal transformer, change the speed and take more records! Iden-

tify the components that can be detected in the 0..500 Hz range! Determine the slip of the asynchronous

motor at rated voltage. Be careful to choose the DFT length!

3. Place the vibration sensor on the side of the box and send a variable frequency sinusoidal signal to the

loudspeaker. Adjust the �L� shaped plate to get it to �rattle� at certain frequencies. Without allowing

rattling, measure the magnitude response between the input voltage and the acceleration signal! To do

this, generate white noise of suitable duration in MATLAB! Interpret the �nal result, justify the most

important breakpoints, maximum and minimum locations of the FRF!

4. What kind of excitation and analysis would you use to detect if the �L� shaped plate gets too close to

the box, i.e. a harmful mechanical phenomenon occurs? During the measurement, only a measurement

method capable of distinguishing between �correct� and �uncorrect� conditions must be developed and

demonstrated, automatic recognition of the condition is not a task.

5. (Optional) Use an acceleration sensor to record the sound of the bell being struck. Determine the main

components and their decay time constant.

6. (Optional) Using the results of the previous task, generate a �bell sound�. Listen to the signal on a

loudspeaker and evaluate the result.

8


