
BME MIT Operating Systems Spring 2017.

Memory management 1 / 30

Péter Györke
http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)
Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)
These slides are under copyright.

Operating Systems – Memory management

BME MIT Operating Systems Spring 2017.

Memory management 2 / 30

The main blocks of the OS and the kernel (recap)

Hardware devices

System libraries

System processes User processes
N

on
-p

ro
te

ct
ed

(u
se

r)
Pr

ot
ec

te
d

(s
ys

te
m

)

Device managers Loader Scheduler

IT handler

I/O operations

Systemcall interface

Memory manager

Communications

Pr
oc

es
s

m
an

ag
em

en
t

BME MIT Operating Systems Spring 2017.

Memory management 3 / 30

Data structures of the tasks (recap)
• Activities performed by programs

– Tasks have state and life-cycle
– Tasks have own and administrative data structures

• Program data (in the task’s memory range)
– Code
– Static allocated data
– Stack: temporary storage, e.g. for function calls
– Heap: runtime (dynamic) allocated memory space

• Administrative data (managed by the kernel)
– Task (process, thread) descriptor
– Unique ID (PID, TID)
– State
– Context of the task: the descriptor of the execution state

• Program counter, CPU registers
• Scheduling information
• Memory management state (MMU state)

– Owner and permissions
– I/O state information

Stack

Free memory

Heap
Static data

Code

PID
State

Context

Permissions
I/O state

…

BME MIT Operating Systems Spring 2017.

Memory management 4 / 30

Separation of the tasks (abstract virtual machine concept)
• The ideal scenario: every task runs independent of each other

– No effects on other tasks
– It seems they running on a separate machine (resources)

• In the reality: not enough resources for each task
– They have to share the resources (CPU, memory, etc.)
– Goal: the task (and the user) don’t notice this
– The kernel provides an abstract virtual machine for the tasks (virtual CPU and memory)
– A typical multi-programmed system

• M processor (1<= M <= 8), N task (N > 10-100)
• More task than processor (N >> M)
• N abstract virtual machines have to be assigned to the physical resources
• In a way that the tasks don’t the existence of other tasks, but still sharing the common resources

• Complex activities require more than one task: this makes the situation more
complex
– Communication (IPC) and cooperation schemas have to be provided

BME MIT Operating Systems Spring 2017.

Memory management 5 / 30

Memory management
• Storing and managing task’s data structures in the RAM

– Code and static data are loaded from the HDD
– Dynamic data: heap and stack

• The kernel allocates some memory for its own data structures
– Code and static data are loaded at the system boot

• Typically there isn’t enough physical memory
– Multiprogrammed systems: multiple tasks are loaded at the same time  using memory
– The OS try to provide memory for every task
– the OS virtually increase the size of the physical memory: virtual memory

• The data structures of the tasks and the kernel should be protected
– The physical memory sections are separated to ensure safe operation of the tasks (others

can’t corrupt their data)
– Memory management provides the separation usually with HW support
– The kernel manages the occurred errors: general protection fault, illegal addressing  the

faulty task will be stopped
• Supporting communication

– Tasks may communicate with each other, or with the kernel
• Increasing efficiency

– Shared memory ranges (e.g. code), avoiding unnecessary allocations

BME MIT Operating Systems Spring 2017.

Memory management 6 / 30

Typical task memory usage
• The code and data are in the same memory

– Neumann architecture
• At the start the tasks don’t need all of their code and data
• Dynamic allocation during runtime

– The tasks don’t mind the size of the physical memory
– They can dynamically allocate a larger memory section
– The allocated memory often not used entirely

• There are locality properties
– Temporal locality: repeated operations on the same data
– Spatial locality: operations on data near each other
– Algorithmic locality: patters in the operation

• There can be never used code and data
– The execution of the program code can different, influenced by external

circumstances
– Many functions are rarely used (exceptions, rare operations)

• The tasks may share some of their code and data

BME MIT Operating Systems Spring 2017.

Memory management 7 / 30

Virtual memory management
• Based on the typical usage and on the abstract virtual machine

concept…
• The current OSs using virtual memory management

– It provides a separated, contiguous virtual memory range
– Manages the association between the virtual and physical memory sections
– Providing memory for more tasks at the same time
– Allocating only the necessary memory range for the tasks
– It is possible to fulfill higher demands than the physical memory
– The tasks may have shared ranges (read-only)
– In the meantime the kernel provides separation and protection

• The basic methods of MM
– Association of virtual and physical addresses: address translation
– Separation of the tasks memory range with HW support: paging
– Extending the (fast) physical memory size with (slow) HDD: swap

BME MIT Operating Systems Spring 2017.

Memory management 8 / 30

Address translation and paging
• The tasks of the Memory Management Unit (MMU)

– Address translation: from CPU address to physical RAM and I/O addresses
• Address translation in virtual MM

– The tasks reach the whole CPU memory range
• This is the virtual range

– E.g.: x86-64: 248 = 256 terabyte
• The physical memory is only a fragment of this

– It may addressed with the physical memory address range
• If there are no sufficient physical memory,

the rest will be stored on the HDD

• The memory organized in pages
– The virtual range is divided into equal size pages
– The physical memory is also divided into same size frames
– The pages stored on the HDD in blocks
– Page table: association between physical frames, virtual pages and HDD blocks

• Valid (=1, it’s in the physical memory)
• Dirty (=0, the data is the same as the stored version on the HDD)
• Accessed (=1, recently used page)

– Translation Lookaside Buffer (TLB): accelerating the address translation

HDD

Physical memory

Virtual memory

Address translation

BME MIT Operating Systems Spring 2017.

Memory management 9 / 30

Address translation and page table
• The common hardware uses hierarchical page table

– The page table is also divided into pages
– Relatively fast
– Not stored entirely in the memory
– On 64-bit systems it can be tree (4-6 levels)
– It is used by ARM and x86 architectures also

• The steps of address translation
– Subdividing addresses

• Page number index
• Offset

– The physical frame is identified by the index
– The offset is added to the index

• Address (task) separation
– Usually separate page tables for tasks

• The page table is part of the tasks context

Valid?

1 43 Y

2 43 N

3 - N

4 - N

5 57 Y

6 - N

7 36 N

8

page
num. offset

1 489

start
address offset

43 489

Virt. address Phy. address

Single level page table

BME MIT Operating Systems Spring 2017.

Memory management 10 / 30

Swap (or aka pagefile)
• It is used to extend the capacity of the phyisical memory

– It is divivided into blocks
– Code and date also can be stored in the blocks
– CPU cannot access these data directly

• First it has to loaded into the physical memory
– Significantly slower than physical memory

• Swapping
– If the stored data is requested by the CPU, it has to loaded back into the RAM
– If we need more space in the RAM, some frames have to be moved to the swap

• Initial implementation of swapping
– The developement started before the paging is used
– The whole task’s memory range was written to the HDD, to free physical memory
– This caused the fragmentation of the RAM and the swap space

• Variable size „holes” appeared in the ranges, hard to fill these without gaps
• They try to manage this by dynamically reordering the memory spaces

BME MIT Operating Systems Spring 2017.

Memory management 11 / 30

Virtual memory management
• Based on paging and abstract virtual machine concept

– The memory range of tasks are divided into pages (no/less fragmentation)
– The pages are stored in the RAM or in the swap
– The HW MMU is configured to support this behavior
– The MMU interrupts has to be managed

• During task execution
– The TLB and MMU translates the virtual addresses to physical addresses
– The protection of the pages is done by the MMU HW

• IT is generated, when an error occurs

• Managing ITs by MMU
– Protection fault: the running task try to access and address outside its range

• E.g.: bad pointer
• The operation of this task should be terminated

– Page fault: the requested page is not in the physical memory
• Before the task continue its operation, the page has to be loaded back to RAM

BME MIT Operating Systems Spring 2017.

Memory management 12 / 30

Managing page faults
• The requested page is not valid (valid=0)

– A page fault IT is generated by the MMU, the kernel’s IT handler starts to run
– It determines the source of the requested page

• It is on the HDD swap space
• Fill-on-demand

– Zero-fill: e.g. dynamically allocated memory
– Fill-from-text: for loading code or static data from the HDD

– It starts loading the data to an empty physical frame
• If there are no free frames, one of them has to swapped
• If there is a free frame, the starting address of the frame is stored into the page table
• This I/O op. may be long, so the task is entered into waiting state

– The kernel returns from the IT handler (changes to another task)
• When the page load is done

– The page table entry will be set to valid (valid=1)
– The task will be ready-to-run

• When the task gets in running state
– The operation is continues from the instruction which caused the page fault

BME MIT Operating Systems Spring 2017.

Memory management 13 / 30

Further tasks of the kernel’s memory manager
• Providing free frames in the physical memory

– It is a basic condition to solve page faults, but is also required for new allocations
– This should be done in advance, when the system is lightly loaded freeing

unused frames
– If there are no free frames and a page fault happens  page swap
– There are multiple swapping strategies (see later)

• Administering
– The pages of virtual memory – page table
– The frames of the physical memory – page frame data
– The swap space on the HDD – disc block descriptor and swap map

• Further tasks
– Updating the page table with the MMU
– Storing frames to the HDD which are cannot fit into the RAM
– Loading requested pages from HDD
– If required whole tasks may be swapped to the HDD

BME MIT Operating Systems Spring 2017.

Memory management 14 / 30

The data structures of virtual memory management
• Page frame data (pfdata) entry (kernel)

– Every frame has one entry, indexed by the starting address of the frame
– State: free, used, under DMA op., etc.
– Reference counter: how many task uses this frame

• Kernels page table entry (part of task’s context)
– There fields used by the MMU HW

• Index of the page
• Frame identifier (where is (was) the page in the RAM)
• Valid bit: =1 if the page is in the RAM
• Dirty bit: =1 if the page is written since it is in the RAM
• Accessed bit: =1 if the page is „recently” accessed
• Read-only bit

– There are fields which not managed by the MMU (HW dependent)
• Page state: in RAM, on disk, fill-on-demand
• Task ID, copy-on-write bit, permissions, etc.

• Disk block descriptor (kernel)
– The disk ID: which file on which disk
– Block index
– Type: swap, fill-on-demand

BME MIT Operating Systems Spring 2017.

Memory management 15 / 30

References between date structures and address translation

page
num. offset

2 489

start
address offset

43 489

Virt. address Phy. address

Page table and disc block desc.

frame valid device idx

1 43 N sda1 5

2 43 Y swap 3

3 - N sda1 6

4 - N ZF

5 57 N swap 36

6 36 N swap 13

7 N

8

addr. state acc dirty

36 free 0 0

43 used 1 0

57 used 2 1
Page frame data

BME MIT Operating Systems Spring 2017.

Memory management 16 / 30

Performance boosting techniques: fill-on-demand
• The tasks are allocating memory dynamically (e.g. malloc())

– After the allocation the memory is uninitialized, the contents is undefined
– Therefore a physical frame is not allocated, only a page table entry is

generated
• Operation of a fill-on-demand entry

– The kernel don’t allocate a physical frame during malloc()
– The new page table entry will be marked with fill-on-demand flag: fill-on-

demand/zero-fill (ZF)
– When the task tries to access the data first time

• The MMU generates a page fault IT
• The kernel’s IT handler detects that a new frame has to be allocated from the free

frames
• Based on the flag, the frame will be filled with zeros or data from the disc (fill-from-text)
• After the IT returns, the task can access the data

• With this technique the tasks can allocate memory efficiently
– Only allocating resources when they are actually needed

BME MIT Operating Systems Spring 2017.

Memory management 17 / 30

Performance boosting techniques: copy-on-write (COW)
• The number of used physical memory frames may be decreased with page sharing

– More than one task can use the same frames
– No problem when there are just read operations
– In the case of writing, the frame will be duplicated and the writer task gets the new instance

• Memory management of the processes created by fork() system call
– The fork() in UNIX systems is used to create a new process by duplicating the memory range

of the caller task
• The new process (child) is the exact copy of the parent

– The child process inherits the parents page table entries, no new physical frame is allocated
• The reference counter is increased in the page frame data
• The read-only (RO) and copy-on-write (COW) flags are set

– The two process are sharing the same frames and swap space
– When one of the tasks tries to write one on the frames

• Due to the RO bit, a HW IT is generated
• The kernel’s IT handler detects the RO and COW bits, so new frame will be allocated, and the data is

copied
• The RO and COW bits are cleared on both frames
• Returns from the IT and the task can continue its write operation

– Very efficient way to create new processes
• COW is a common technique in UNIX and Windows also

BME MIT Operating Systems Spring 2017.

Memory management 18 / 30

Which pages should be in the physical memory?
• A high page fault frequency (PPF) is disadvantageous

– Managing page faults usually introduce
• A high number of ITs  high number of context changes
• Additional I/O operations

– The tasks execution is interrupted, waiting state, re-scheduling
• A CPU intensive task may become I/O intensive, however the task don’t execute any I/O

operations
– The overhead is getting higher  system performance degradation

• Thrashing: high PPF, severe performance degradation
• Managing a page fault may introduce another page fault, more and more I/O operations,

CPU utilization decreases
• It may be managed by a medium-term scheduler, constraining the number of tasks

• If a task has many pages in the RAM
– The number of page faults will be lower for this task
– The other task will won’t get enough physical memory

• If a task has few frames in the RAM
– A high number of tasks may execute simultaneously
– Each task will generate a high number of page faults  slower operation

BME MIT Operating Systems Spring 2017.

Memory management 19 / 30

The emergence of trashing

BME MIT Operating Systems Spring 2017.

Memory management 20 / 30

Paging strategies
• Demand paging

– Only runs when a page fault occurs, loads only the requested page
– Simple, only the requested pages will be loaded to RAM
– Every time a new page is requested, a PF will be generated

• This can significantly slow tasks down (CPU intensive task will become I/O intensive)
• E.g. iterated over a large data structure
• Every PF will enter the task into waiting state  high number of context changes,

inefficient I/O operations

• Anticipatory paging
– It’s try to figure out which pages will be requested

• It is based on the locality properties of the tasks
• And the tasks PF rate, higher PFF  more pages should be loaded to RAM

– A good prediction will significantly lower the number of page faults
– A „less good” prediction may load pages which are unnecessarily using the RAM

at the moment
• If there are enough RAM, it isn’t a serious problem

– Observing the global PFF, the number of active tasks can be determined
• In order to avoid trashing, a number of active tasks should be decreased

BME MIT Operating Systems Spring 2017.

Memory management 21 / 30

Page replacement algorithms – introduction
• A page has to be loaded, but there are no free frames

– A used frame has to be picked, which will be moved to the swap space and mark as free
• The picking based on

– Accessed bit: Is it used „recently”?
– Dirty bit: Is the contents modified?
– The allocation time of the frame
– The latest access time of the frame
– Reference counter: how many task uses this frame?

• The properties of page replacement algorithms
– Ideal solution: seeing the future

• It is similar to the estimation of the CPU burst of a task
• In practice, the prediction is based on the behavior in the past

– The frame to swap may be chosen from the actual task’s (local) range or from the global
range

– Algorithms (details on following slides)
• FIFO: the page loaded first will be replaced first
• Second chance (SC): oldest and not accessed page
• Least Recently Used (LRU): the oldest accessed page
• Least Frequently Used (LFU): the most rarely used page
• Not Recently Used (NRU): Non accessed and non modified page

BME MIT Operating Systems Spring 2017.

Memory management 22 / 30

FIFO page replacement and Bélády’s anomaly
• Simple, low overhead, backward looking algorithm
• When a page is associated with a frame (loaded into the RAM) it will be queued in

a FIFO queue
• If a free frame is needed

– From the front of the queue a page table entry is picked
– The associated frame will be written to the HDD
– The frame will be freed and the new allocation can be made

• What happens if we increase the available frame count?
– It is expected that PF rate will decrease
– In practice this isn’t always the case: from time to time the PF rate will increase when the

available frame count is higher
– This is called the Bélády’s anomaly (László Bélády, IBM virtual memory management)

• Evaluating FIFO algorithm
– Simple, simple implementation, low overhead
– The estimation of the future demand is poor
– It cannot differentiate between modified and unchanged pages, it may replace unchanged

pages  unnecessary disk operations

BME MIT Operating Systems Spring 2017.

Memory management 23 / 30

Example of Bélády’s anomaly
Page requests FIFO (3 fr) FIFO (4 fr)

3 3 3

2 2 3 2 3

1 1 2 3 1 2 3

0 0 1 2 0 1 2 3

3 3 0 1 0 1 2 3

2 2 3 0 0 1 2 3

4 4 2 3 4 0 1 2

3 4 2 3 3 4 0 1

2 4 2 3 2 3 4 0

1 1 4 2 1 2 3 4

0 0 1 4 0 1 2 3

4 0 1 4 4 0 1 2

tim
e

Number of PF when the FIFO size is 3: 9
Number of PF when the FIFO size is 4: 10

BME MIT Operating Systems Spring 2017.

Memory management 24 / 30

Second chance (SC) page replacement algorithm
• SC also uses FIFO data structure

– When a page is associated with a frame it will be queued in a FIFO queue

• From the front of the queue the page table entry is picked
– If (accessed_bit == 1) //MMU sets this bit

• accessed_bit = 0;
• The page table entry is moved back to the back of the queue

– Else
• The page is not used recently, so this will be replaced

• Evaluating SC algorithm
– Simple, simple implementation, low overhead
– The future demand estimation is better than pure FIFO

• The accessed bit is showing the recent usage of a page
– It still cannot differentiate between modified and unchanged pages, it may

replace unchanged pages  unnecessary disk operations

BME MIT Operating Systems Spring 2017.

Memory management 25 / 30

Least Recently Used (LRU) page replacement algorithm
• The pages are ordered in a queue based on their last access

time
– There are multiple implementations based on the MMU HW
– The page table entries are stored in an ordered chained list
– There are also a reference counter for each page
– The page with the smallest value will be replaced

• Evaluating LRU algorithm
– Complex, high overhead, is should be implemented only with HW

support
– It gives a very good estimation of the future usage of the pages
– Problem: a new page can be replaced with high priority
– It still cannot differentiate between modified and unchanged pages,

it may replace unchanged pages  unnecessary disk operations

BME MIT Operating Systems Spring 2017.

Memory management 26 / 30

Least Frequently Used (LFU) page replacement algorithm

• The simplified version of the LRU alg.
– It can be implemented without HW support
– The OS periodically checks that a page is used or not, if used a

counter will be incremented
• This not happens with every memory operation like in LRU

• Evaluating LFU algorithm
– Medium overhead
– It’s a rather good estimation of the future uses of pages
– Problem: a new page can be replaced with high priority
– The counter can overflow (aging can handle this)
– It still cannot differentiate between modified and unchanged

pages, it may replace unchanged pages  unnecessary disk
operations

BME MIT Operating Systems Spring 2017.

Memory management 27 / 30

Not Recently Used (NRU) page replacement algorithm
• The refined version of the SC alg.

– Beside the accessed bit, the dirty bit is also taken into account
– With this two bit, a „priority” is assigned to each page

• acc=0, dirty = 0  pri = 0
• acc=0, dirty = 1  pri = 1
• acc=1, dirty = 0  pri = 2
• acc=1, dirty = 1  pri = 3

– If a frame is needed, the one with the smallest priority will be
chosen

• Evaluating NRU algorithm
– Low overhead, good utilization of the HW bits
– Better estimation than SC
– It can differentiate between the modified and unchanged pages

BME MIT Operating Systems Spring 2017.

Memory management 28 / 30

Page locking
• Multiple algorithms suffer from the same problem: the newly loaded

pages
– The newly loaded pages don’t have „past”, (e.g.: no counter values)
– Therefore the future is hard to estimate
– There is high chance this pages will be replaced

• Pages under I/O operation cannot be replaced
– I/O operations using physical addresses
– With DMA, these operation can be done without the CPU (in the background,

simultaneously)

• Page locking can solve these problems
– A special page lock bit is used
– The locked pages cannot be replaced
– The locking is maintained until the end of the I/O operations
– With LRU and LFU algorithms the page is usually locked until it’s first access

BME MIT Operating Systems Spring 2017.

Memory management 29 / 30

Providing free frames: page daemon task
• The page replacement usually happens at the „wrong” time

– The replacement happens when there are no free frames, so it must happen
– The free frames can be run out because the high system load  this isn’t an

ideal time for page replacement (context change, I/O, etc.)
– It would be better to do this when the system load is low

• Page daemon task (kswapd, Working Set Manager)
– It runs periodically by the kernel
– It tries to maintain the number of free frames between two thresholds

• If the number drops below a minimum value, then additional frames will be freed up
(e.g.: with NRU alg.), until the maximum value is reached

– It may maintain the data structures for page replacement algorithms
• Resetting accessed bit
• Aging the counters

– This kernel process may also perform the page replacement also
• Despite the operation of this task, if the free frames still run out, the page

replacement should be performed ASAP

BME MIT Operating Systems Spring 2017.

Memory management 30 / 30

Summary
• The concept of abstract virtual machine in multiprogrammed systems

– The tasks get their own virtual memory range
• The tasks of the kernel’s memory manager

– Translating between virtual and physical addresses
– Usually there are not enough physical memory  swapping
– The memory is organized into pages/frames/blocks to avoid fragmentation
– The virtual pages are assigned to RAM frames or disk blocks
– The memory ranges of different tasks are protected
– To improve efficiency some ranges can be shared

• Address translation
– Works with HW support (MMU, TLB)
– If the HW generates page fault IT, the SW page management steps in

• The kernel manages page faults (PF), it tries to avoid thrashing
– There are different page replacement algorithms to free physical frames
– It tries to decrease the PF rate with future page demand allocation

	Slide 1
	The main blocks of the OS and the kernel (recap)
	Data structures of the tasks (recap)
	Separation of the tasks (abstract virtual machine concept)
	Memory management
	Typical task memory usage
	Virtual memory management
	Address translation and paging
	Address translation and page table
	Swap (or aka pagefile)
	Virtual memory management (2)
	Managing page faults
	Further tasks of the kernel’s memory manager
	The data structures of virtual memory management
	References between date structures and address translation
	Performance boosting techniques: fill-on-demand
	Performance boosting techniques: copy-on-write (COW)
	Which pages should be in the physical memory?
	The emergence of trashing
	Paging strategies
	Page replacement algorithms – introduction
	FIFO page replacement and Bélády’s anomaly
	Example of Bélády’s anomaly
	Second chance (SC) page replacement algorithm
	Least Recently Used (LRU) page replacement algorithm
	Least Frequently Used (LFU) page replacement algorithm
	Not Recently Used (NRU) page replacement algorithm
	Page locking
	Providing free frames: page daemon task
	Summary

