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The main blocks of the OS and the kernel (recap)
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Data structures of the tasks (recap)
• Activities performed by programs

– Tasks have state and life-cycle
– Tasks have own and administrative data structures

• Program data (in the task’s memory range)
– Code
– Static allocated data
– Stack: temporary storage, e.g. for function calls
– Heap: runtime (dynamic) allocated memory space

• Administrative data (managed by the kernel)
– Task (process, thread) descriptor
– Unique ID (PID, TID)
– State
– Context of the task: the descriptor of the execution state

• Program counter, CPU registers
• Scheduling information
• Memory management state (MMU state)

– Owner and permissions
– I/O state information

Stack

Free memory

Heap
Static data

Code

PID
State

Context

Permissions
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Separation of the tasks (abstract virtual machine concept)
• The ideal scenario: every task runs independent of each other

– No effects on other tasks
– It seems they running on a separate machine (resources)

• In the reality: not enough resources for each task
– They have to share the resources (CPU, memory, etc.)
– Goal: the task (and the user) don’t notice this
– The kernel provides an abstract virtual machine for the tasks (virtual CPU and memory)
– A typical multi-programmed system

• M processor (1<= M <= 8), N task (N > 10-100)
• More task than processor (N >> M)
• N abstract virtual machines have to be assigned to the physical resources
• In a way that the tasks don’t the existence of other tasks, but still sharing the common resources

• Complex activities require more than one task: this makes the situation more 
complex
– Communication (IPC) and cooperation schemas have to be provided
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Memory management
• Storing and managing task’s data structures in the RAM

– Code and static data are loaded from the HDD
– Dynamic data: heap and stack

• The kernel allocates some memory for its own data structures
– Code and static data are loaded at the system boot

• Typically there isn’t enough physical memory
– Multiprogrammed systems: multiple tasks are loaded at the same time  using memory
– The OS try to provide memory for every task
– the OS virtually increase the size of the physical memory: virtual memory

• The data structures of the tasks and the kernel should be protected
– The physical memory sections are separated to ensure safe operation of the tasks (others 

can’t corrupt their data)
– Memory management provides the separation usually with HW support
– The kernel manages the occurred errors: general protection fault, illegal addressing  the 

faulty task will be stopped
• Supporting communication

– Tasks may communicate with each other, or with the kernel
• Increasing efficiency

– Shared memory ranges (e.g. code), avoiding unnecessary allocations
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Typical task memory usage
• The code and data are in the same memory

– Neumann architecture
• At the start the tasks don’t need all of their code and data
• Dynamic allocation during runtime

– The tasks don’t mind the size of the physical memory
– They can dynamically allocate a larger memory section
– The allocated memory often not used entirely

• There are locality properties
– Temporal locality: repeated operations on the same data
– Spatial locality: operations on data near each other
– Algorithmic locality: patters in the operation

• There can be never used code and data
– The execution of the program code can different, influenced by external 

circumstances
– Many functions are rarely used (exceptions, rare operations)

• The tasks may share some of their code and data
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Virtual memory management
• Based on the typical usage and on the abstract virtual machine 

concept…
• The current OSs using virtual memory management

– It provides a separated, contiguous virtual memory range
– Manages the association between the virtual and physical memory sections
– Providing memory for more tasks at the same time
– Allocating only the necessary memory range for the tasks
– It is possible to fulfill higher demands than the physical memory
– The tasks may have shared ranges (read-only)
– In the meantime the kernel provides separation and protection

• The basic methods of MM
– Association of virtual and physical addresses: address translation
– Separation of the tasks memory range with HW support: paging
– Extending the (fast) physical memory size with (slow) HDD: swap
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Address translation and paging
• The tasks of the Memory Management Unit (MMU)

– Address translation: from CPU address to physical RAM and I/O addresses
• Address translation in virtual MM

– The tasks reach the whole CPU memory range
• This is the virtual range

– E.g.: x86-64: 248 = 256 terabyte
• The physical memory is only a fragment of this

– It may addressed with the physical memory address range
• If there are no sufficient physical memory, 

the rest will be stored on the HDD

• The memory organized in pages
– The virtual range is divided into equal size pages
– The physical memory is also divided into same size frames
– The pages stored on the HDD in blocks
– Page table: association between physical frames, virtual pages and HDD blocks

• Valid (=1, it’s in the physical memory)
• Dirty (=0, the data is the same as the stored version on the HDD)
• Accessed (=1, recently used page)

– Translation Lookaside Buffer (TLB): accelerating the address translation

HDD

Physical memory

Virtual memory

Address translation
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Address translation and page table
• The common hardware uses hierarchical page table

– The page table is also divided into pages
– Relatively fast
– Not stored entirely in the memory
– On 64-bit systems it can be tree (4-6 levels)
– It is used by ARM and x86 architectures also

• The steps of address translation
– Subdividing addresses

• Page number index
• Offset

– The physical frame is identified by the index
– The offset is added to the index

• Address (task) separation
– Usually separate page tables for tasks

• The page table is part of the tasks context

Valid?

1 43 Y

2 43 N

3 - N

4 - N

5 57 Y

6 - N

7 36 N

8

page 
num. offset

1 489

start 
address offset

43 489

Virt. address Phy. address

Single level page table
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Swap (or aka pagefile)
• It is used to extend the capacity of the phyisical memory

– It is divivided into blocks
– Code and date also can be stored in the blocks
– CPU cannot access these data directly

• First it has to loaded into the physical memory
– Significantly slower than physical memory

• Swapping
– If the stored data is requested by the CPU, it has to loaded back into the RAM
– If we need more space in the RAM, some frames have to be moved to the swap

• Initial implementation of swapping
– The developement started before the paging is used
– The whole task’s memory range was written to the HDD, to free physical memory
– This caused the fragmentation of the RAM and the swap space

• Variable size „holes” appeared in the ranges, hard to fill these without gaps
• They try to manage this by dynamically reordering the memory spaces
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Virtual memory management
• Based on paging and abstract virtual machine concept

– The memory range of tasks are divided into pages (no/less fragmentation)
– The pages are stored in the RAM or in the swap
– The HW MMU is configured to support this behavior
– The MMU interrupts has to be managed

• During task execution
– The TLB and MMU translates the virtual addresses to physical addresses
– The protection of the pages is done by the MMU HW

• IT is generated, when an error occurs

• Managing ITs by MMU
– Protection fault: the running task try to access and address outside its range

• E.g.: bad pointer
• The operation of this task should be terminated

– Page fault: the requested page is not in the physical memory
• Before the task continue its operation, the page has to be loaded back to RAM
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Managing page faults
• The requested page is not valid (valid=0)

– A page fault IT is generated by the MMU, the kernel’s IT handler starts to run
– It determines the source of the requested page

• It is on the HDD swap space
• Fill-on-demand

– Zero-fill: e.g. dynamically allocated memory
– Fill-from-text: for loading code or static data from the HDD

– It starts loading the data to an empty physical frame
• If there are no free frames, one of them has to swapped
• If there is a free  frame, the starting address of the frame is stored into the page table
• This I/O op. may be long, so the task is entered into waiting state

– The kernel returns from the IT handler (changes to another task)
• When the page load is done

– The page table entry will be set to valid (valid=1)
– The task will be ready-to-run

• When the task gets in running state
– The operation is continues from the instruction which caused the page fault
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Further tasks of the kernel’s memory manager
• Providing free frames in the physical memory

– It is a basic condition to solve page faults, but is also required for new allocations
– This should be done in advance, when the system is lightly loaded freeing 

unused frames
– If there are no free frames and a page fault happens  page swap
– There are multiple swapping strategies (see later)

• Administering
– The pages of virtual memory – page table
– The frames of the physical memory – page frame data
– The swap space on the HDD – disc block descriptor and swap map

• Further tasks
– Updating the page table with the MMU
– Storing frames to the HDD which are cannot fit into the RAM
– Loading requested pages from HDD
– If required whole tasks may be swapped to the HDD
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The data structures of virtual memory management
• Page frame data (pfdata) entry (kernel)

– Every frame has one entry, indexed by the starting address of the frame
– State: free, used, under DMA op., etc.
– Reference counter: how many task uses this frame

• Kernels page table entry (part of task’s context)
– There fields used by the MMU HW

• Index of the page
• Frame identifier (where is (was) the page in the RAM)
• Valid bit: =1 if the page is in the RAM
• Dirty bit: =1 if the page is written since it is in the RAM
• Accessed bit: =1 if the page is „recently” accessed
• Read-only bit

– There are fields which not managed by the MMU (HW dependent)
• Page state: in RAM, on disk, fill-on-demand
• Task ID, copy-on-write bit, permissions, etc.

• Disk block descriptor (kernel)
– The disk ID: which file on which disk
– Block index
– Type: swap, fill-on-demand
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References between date structures and address translation

page 
num. offset

2 489

start 
address offset

43 489

Virt. address Phy. address

Page table and disc block desc.

frame valid device idx

1 43 N sda1 5

2 43 Y swap 3

3 - N sda1 6

4 - N ZF

5 57 N swap 36

6 36 N swap 13

7 N

8

addr. state acc dirty

36 free 0 0

43 used 1 0

57 used 2 1
Page frame data
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Performance boosting techniques: fill-on-demand
• The tasks are allocating memory dynamically (e.g. malloc())

– After the allocation the memory is uninitialized, the contents is undefined
– Therefore a physical frame is not allocated, only a page table entry is 

generated
• Operation of a fill-on-demand entry

– The kernel don’t allocate a physical frame during malloc()
– The new page table entry will be marked with fill-on-demand flag: fill-on-

demand/zero-fill (ZF)
– When the task tries to access the data first time

• The MMU generates a page fault IT
• The kernel’s IT handler detects that a new frame has to be allocated from the free 

frames
• Based on the flag, the frame will be filled with zeros or data from the disc (fill-from-text)
• After the IT returns, the task can access the data

• With this technique the tasks can allocate memory efficiently
– Only allocating resources when they are actually needed
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Performance boosting techniques: copy-on-write (COW)
• The number of used physical memory frames may be decreased with page sharing

– More than one task can use the same frames
– No problem when there are just read operations
– In the case of writing, the frame will be duplicated and the writer task gets the new instance

• Memory management of the processes created by fork() system call
– The fork() in UNIX systems is used to create a new process by duplicating the memory range 

of the caller task
• The new process (child) is the exact copy of the parent

– The child process inherits the parents page table entries, no new physical frame is allocated
• The reference counter is increased in the page frame data
• The read-only (RO) and copy-on-write (COW) flags are set 

– The two process are sharing the same frames and swap space
– When one of the tasks tries to write one on the frames

• Due to the RO bit, a HW IT is generated
• The kernel’s IT handler detects the RO and COW bits, so new frame will be allocated, and the data is 

copied
• The RO and COW bits are cleared on both frames
• Returns from the IT and the task can continue its write operation

– Very efficient way to create new processes
• COW is a common technique in UNIX and Windows also
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Which pages should be in the physical memory?
• A high page fault frequency (PPF) is disadvantageous

– Managing page faults usually introduce
• A high number of ITs  high number of context changes
• Additional I/O operations

– The tasks execution is interrupted, waiting state, re-scheduling
• A CPU intensive task may become I/O intensive, however the task don’t execute any I/O 

operations
– The overhead is getting higher  system performance degradation

• Thrashing: high PPF, severe performance degradation
• Managing a page fault may introduce another page fault, more and more I/O operations, 

CPU utilization decreases
• It may be managed by a medium-term scheduler, constraining the number of tasks

• If a task has many pages in the RAM
– The number of page faults will be lower for this task
– The other task will won’t get enough physical memory

• If a task has few frames in the RAM
– A high number of tasks may execute simultaneously
– Each task will generate a high number of page faults  slower operation
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The emergence of trashing
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Paging strategies
• Demand paging

– Only runs when a page fault occurs, loads only the requested page
– Simple, only the requested pages will be loaded to RAM
– Every time a new page is requested, a PF will be generated

• This can significantly slow tasks down (CPU intensive task will become I/O intensive)
• E.g. iterated over a large data structure
• Every PF will enter the task into waiting state  high number of context changes, 

inefficient I/O operations

• Anticipatory paging
– It’s try to figure out which pages will be requested

• It is based on the locality properties of the tasks
• And the tasks PF rate, higher PFF  more pages should be loaded to RAM

– A good prediction will significantly lower the number of page faults
– A „less good” prediction may load pages which are unnecessarily using the RAM 

at the moment
• If there are enough RAM, it isn’t a serious problem

– Observing the global PFF, the number of active tasks can be determined
• In order to avoid trashing, a number of active tasks should be decreased
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Page replacement algorithms – introduction
• A page has to be loaded, but there are no free frames

– A used frame has to be picked, which will be moved to the swap space and mark as free
• The picking based on

– Accessed bit: Is it used „recently”?
– Dirty bit: Is the contents modified?
– The allocation time of the frame
– The latest access time of the frame
– Reference counter: how many task uses this frame?

• The properties of page replacement algorithms
– Ideal solution: seeing the future

• It is similar to the estimation of the CPU burst of a task
• In practice, the prediction is based on the behavior in the past

– The frame to swap may be chosen from the actual task’s (local) range or from the global 
range

– Algorithms (details on following slides)
• FIFO: the page loaded first will be replaced first
• Second chance (SC): oldest and not accessed page
• Least Recently Used (LRU): the oldest accessed page
• Least Frequently Used (LFU): the most rarely used page
• Not Recently Used (NRU): Non accessed and non modified page
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FIFO page replacement and Bélády’s anomaly
• Simple, low overhead, backward looking algorithm
• When a page is associated with a frame (loaded into the RAM) it will be queued in 

a FIFO queue
• If a free frame is needed

– From the front of the queue a page table entry is picked
– The associated frame will be written to the HDD
– The frame will be freed and the new allocation can be made

• What happens if we increase the available frame count?
– It is expected that PF rate will decrease
– In practice this isn’t always the case: from time to time the PF rate will increase when the 

available frame count is higher
– This is called the Bélády’s anomaly (László Bélády, IBM virtual memory management)

• Evaluating FIFO algorithm
– Simple, simple implementation, low overhead
– The estimation of the future demand is poor
– It cannot differentiate between modified and unchanged pages, it may replace unchanged 

pages  unnecessary disk operations
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Example of Bélády’s anomaly
Page requests FIFO (3 fr) FIFO (4 fr)

3 3 3

2 2 3 2 3

1 1 2 3 1 2 3

0 0 1 2 0 1 2 3

3 3 0 1 0 1 2 3

2 2 3 0 0 1 2 3

4 4 2 3 4 0 1 2

3 4 2 3 3 4 0 1

2 4 2 3 2 3 4 0

1 1 4 2 1 2 3 4

0 0 1 4 0 1 2 3

4 0 1 4 4 0 1 2

tim
e

Number of PF when the FIFO size is 3: 9
Number of PF when the FIFO size is 4: 10
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Second chance (SC) page replacement algorithm
• SC also uses FIFO data structure

– When a page is associated with a frame it will be queued in a FIFO queue

• From the front of the queue the page table entry is picked
– If (accessed_bit == 1) //MMU sets this bit

• accessed_bit = 0;
• The page table entry is moved back to the back of the queue

– Else
• The page is not used recently, so this will be replaced

• Evaluating SC algorithm
– Simple, simple implementation, low overhead
– The future demand estimation is better than pure FIFO

• The accessed bit is showing the recent usage of a page
– It still cannot differentiate between modified and unchanged pages, it may 

replace unchanged pages  unnecessary disk operations
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Least Recently Used (LRU) page replacement algorithm
• The pages are ordered in a queue based on their last access 

time
– There are multiple implementations based on the MMU HW
– The page table entries are stored in an ordered chained list
– There are also a reference counter for each page
– The page with the smallest value will be replaced

• Evaluating LRU algorithm
– Complex, high overhead, is should be implemented only with HW 

support
– It gives a very good estimation of the future usage of the pages
– Problem: a new page can be replaced with high priority
– It still cannot differentiate between modified and unchanged pages, 

it may replace unchanged pages  unnecessary disk operations
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Least Frequently Used (LFU) page replacement algorithm

• The simplified version of the LRU alg.
– It can be implemented without HW support
– The OS periodically checks that a page is used or not, if used a 

counter will be incremented
• This not happens with every memory operation like in LRU

• Evaluating LFU algorithm
– Medium overhead
– It’s a rather good estimation of the future uses of pages
– Problem: a new page can be replaced with high priority
– The counter can overflow (aging can handle this)
– It still cannot differentiate between modified and unchanged 

pages, it may replace unchanged pages  unnecessary disk 
operations
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Not Recently Used (NRU) page replacement algorithm
• The refined version of the SC alg.

– Beside the accessed bit, the dirty bit is also taken into account
– With this two bit, a „priority” is assigned to each page

• acc=0, dirty = 0  pri = 0
• acc=0, dirty = 1  pri = 1
• acc=1, dirty = 0  pri = 2
• acc=1, dirty = 1  pri = 3

– If a frame is needed, the one with the smallest priority will be 
chosen

• Evaluating NRU algorithm
– Low overhead, good utilization of the HW bits
– Better estimation than SC
– It can differentiate between the modified and unchanged pages
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Page locking
• Multiple algorithms suffer from the same problem: the newly loaded 

pages
– The newly loaded pages don’t have „past”, ( e.g.: no counter values)
– Therefore the future is hard to estimate
– There is high chance this pages will be replaced

• Pages under I/O operation cannot be replaced
– I/O operations using physical addresses
– With DMA, these operation can be done without the CPU (in the background, 

simultaneously)

• Page locking can solve these problems
– A special page lock bit is used
– The locked pages cannot be replaced
– The locking is maintained until the end of the I/O operations
– With LRU and LFU algorithms the page is usually locked until it’s first access
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Providing free frames: page daemon task
• The page replacement usually happens at the „wrong” time

– The replacement happens when there are no free frames, so it must happen
– The free frames can be run out because the high system load  this isn’t an 

ideal time for page replacement (context change, I/O, etc.)
– It would be better to do this when the system load is low

• Page daemon task (kswapd, Working Set Manager)
– It runs periodically by the kernel
– It tries to maintain the number of free frames between two thresholds

• If the number drops below a minimum value, then additional frames will be freed up 
(e.g.: with NRU alg.), until the maximum value is reached

– It may maintain the data structures for page replacement algorithms
• Resetting accessed bit
• Aging the counters

– This kernel process may also perform the page replacement also
• Despite the operation of this task, if the free frames still run out, the page 

replacement should be performed ASAP
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Summary
• The concept of abstract virtual machine in multiprogrammed systems

– The tasks get their own virtual memory range
• The tasks of the kernel’s memory manager

– Translating between virtual and physical addresses
– Usually there are not enough physical memory  swapping
– The memory is organized into pages/frames/blocks to avoid fragmentation
– The virtual pages are assigned to RAM frames or disk blocks
– The memory ranges of different tasks are protected
– To improve efficiency some ranges can be shared

• Address translation
– Works with HW support (MMU, TLB)
– If the HW generates page fault IT, the SW page management steps in

• The kernel manages page faults (PF), it tries to avoid thrashing
– There are different page replacement algorithms to free physical frames
– It tries to decrease the PF rate with future page demand allocation
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