] BME MIT Operating Systems Spring 2017.

Operating Systems Internals - Task Management

Péter Gyorke

http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)
Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)
These slides are under copyright.

Task management 1/22

The operating systems (recap)

* Serving user (and system) tasks
— Life-cycle (creation, operation, termination) and event monitoring
— Providing computational and storage resources
— Providing access to the devices of the computer

* System libraries: Common functions for applications
— Supports the application development

— Providing simple interfaces to system calls (entering protected
mode)

e System applications (and services)
— Applications (user-mode) which come with the OS
— Integrated commands, user interfaces, services

Task management 2/22

 Famis
The main blocks of the OS and the kernel

ks System processes User processes
©
)
-+
)
| -
=
c v System libraries
@)
z 2
Systemcall interface
[7] . .
c |/O operations Communications
()
o=
o = IT handler Memory manager
-+
o2 |
a b : |
Device managers | Loader | Scheduler |
s/
Hardware devices

Task management 3/22

)
The nature of user tasks

Tasks with intensive I/O usage
— Moving and processing data
— Reading and writing to HW devices (disc, USB drive, etc.)

— Most of the time these tasks’ state is ,waiting/idle”
* Waiting for I/O operations or user interactions
* Therefore less CPU time is needed

Tasks with intensive CPU usage

— Performing longer computational operations

— Most of time these tasks’ state is ,running” (at least want to be...)
— Compared to CPU usage less I/0 is needed

— E.g.: cryptography, mathematical operations

Tasks with intensive memory usage

— Working with large amount of data at once

— If there is enough memory -> CPU intensive, if not -> /0 intensive
— E.g.: multiplying large matrices, building and using database indexes

Special demands (examples)
— Providing real-time operation
— Smooth media playback

Task management 4/22

User expectations about user tasks

* Low waiting times
— Waiting time
* Waiting for resources (taken by other tasks), idle state

— Turnaround time
* Time that a task needs to finish it's operation

— Response time
* Response time to a given event

* Good resource utilization

— CPU utilization

* Time ratio of the time, when the CPU is not idle
— Throughput

* Tasks performed in given time slice

— Overhead
* Wasting” resources to OS administrative tasks

* Predictability, deterministic operation
— Small variance of the measures above

Task management 5/22

The optimal task executer system

* The naive user expects optimal behavior for the OS
— Executes the users’ tasks
— Minimizing the waiting and response times
— With good resource (CPU, 1/0) utilization
— With little overhead

* What’s he experience using the system?
— Some tasks runs very slow (starving)
— The concurrent tasks interfere with each other (trying to use the same resources)
— Some of the applications freezes without any reason
— Occasionally the whole system becomes unusable (for some time or finally

* What'’s causing these difficulties?
— The OS don’t know the nature of the tasks in advance
— High number of tasks with different natures
— The tasks may have explicit or implicit effects on each other
— The tasks’ programs are not optimal, especially in cooperation
— Occasionally the system is overloaded, the overhead gets high suddenly (thrashing)

Task management 6/22

§ BMEMIT OperatingSystems Spring2017..
The basics of task managing

* The user activities are performed by programs
— They start, run and terminate

* The task is a program during execution
— The execution is managed by the OS
— A program stored on the HDD is a static binary program and data structures
— A task is a dynamic entity with state and life-cycle
— State: The administrative properties of the task in a given moment
— Life-cycle: The state transitions of the task from the start to the termination

* Assigning user activities with tasks

— In most cases one activity is performed by one task
* Except some cases: complex activities require more than one task
* Or parallel tasks (on multiple machines)
— The task can communicate and cooperate
* Sending and receiving data from each other
* The main activity can be decomposed to smaller jobs, partial results can be summarized
* The tasks can form common procedure structures and cooperation schemas

Task management 7/22

Separation of the tasks (abstract virtual machine)

* The ideal scenario: every task runs independent of each other
— No effects on other tasks
— It seems they running on a separate machine (resources)

* |n the reality: not enough resources for each task
— They have to share the resources (CPU, memory, etc.)
— Goal: the task (and the user) don’t notice this
— The kernel provides an abstract virtual machine for the tasks (virtual CPU and memory)

— A typical multi-programmed system
* M processor (1<= M <= 8), N task (N > 10-100)
* More task than processor (N >> M)
* N abstract virtual machines have to be assigned to the physical resources
* In a way that the tasks don’t the existence of other tasks, but still sharing the common resources

* Complex activities require more than one task: this makes the situation more
complex
— Communication (IPC) and cooperation schemas have to be provided

Task management 8/22

The base types of tasks: process and thread

Not every task needs a ,full” abstract virtual machine assigned
— Running of parallel jobs don’t has to be complicated with task-separation
— The task-separation need higher administrative procedures (higher overhead)

Process
— A task with it's own memory range, it can contain threads

Thread
— A task with sequential operation, it may share memory with other threads

Relationship between process and threads

— The process contains threads, which running ,parallel”

— The threads in a process have shared memory (but own stack)

— They can communicate with each other via the shared memory (variables)

— There isn’t any memory protection between them, the
developer/programmer has to deal with this

— The threads memory are separated from other process threads’ memory by
the OS

— Communication between processes therefore more complicated

Task management 9/22

gz] BMEMIT Operating Systems Spring2017.
Should | use a process or a thread?

* Activity - task assignment and process vs. thread decision
— Is the activity needs to be multi-programmed?
— How many parallel execution units required?
— How often?
— Is the threads are supported in the given system? (see embedded OS-s)

* Pro-s and con-s of the threads
— Low resource requirement (fast creation)

— Inside the process: simple (and fast, no overhead) communication with other threads
* Due to the shared memory
* The programmer has to design the operation carefully
* It may lead to errors (see later lecture)

— Not every platform supports it (most of them does)
— Communication with threads of another process still complex

* Pro-s and con-s processes
— The kernel protects the memory range of the process
— Available on almost every platform
— Higher overhead
— The communication with other process are more complex -> higher overhead

Task management

feeesereeares] feeeseeereess)
MUOEGYETEM 1

@ useri@ubuntu: ~

ATOF — ubuntu
3md4ds

2017/02f

HE 7 Yok ¥ } } 0 15
| PID SYS5CFU USRCPU VGEOW RGROW RDDSK WRDSE 5T EXC 5 CPUO CHD 1/9

4 - 5

Task managers

158 Windows Task Manager

File Options View Help

Applications | Processes | Services

Performance | Networking | Users

CPU Memory (...

Image Name Description
chrome.exe *32 05 129 796 K Google Chrome
putty.exe *32 i} 3 364K S55H, Telnet and Rlogin dient
PrivacylconClient.exe] 11 024K Intel(R) Management and Security Status
POWERPMT.EXE oo 79 132K Microsoft PowerPoint
putty.exe *32 oa 2536 K 55H, Telnet and Rlogin dient
taskmar.exe i} 3 208K Windows Task Manager
vmware-tray.exe 32] 1492K VMware Tray Process
RAVCple4.exe v} 3888 K Realtek HD Audio Manager
igfxpers.exe i} 2843 K persistence Module
firefox.exe *32 an 911 472K Firefox
hkemd, exe an 2520K hkemd Module
igfxtray.exe oa 2 752K ighTray Module
chrome. exe *32 i} 1052K Google Chrome
explorer.exe i} 35 272K Windows Explorer
dwm.exe v} 102 564K Desktop Window Manager
jusched.exe *32 i} 4300K Java Update Scheduler
MNvBackend.exe *32] 10 088 K MVIDIA GeForce Experience Backend
chrome. exe *32 i} 8008 K Google Chrome
chrome.exe *32 oa 45 736 K Google Chrome
DiTLite.exe *32 aa 3076 K DAEMON Tools Lite

i owndoud,exe *32 an 156 340K ownCloud
chrome.exe *32 v} 1243 K Google Chrome
egui.exe oo 183816 K ESET Main GUL
conhost.exe an 1432K
nustraamaur eva nn 4706 K

| '&' Show processes from all users

Processes: 78 CPU Usage: 6%

End Prot

Physical Memory: 52%

11/ 22

4
Data structures of the tasks

* Activities performed by programs Stack
— Tasks have state and life-cycle * * *
— Tasks have own and administrative data structures

i F
* Program data (in the task’s memory range) ree memory

— Code f f f

— Static allocated data Heap

— Stack: temporary storage, e.g. for function calls Static data

— Heap: runtime (dynamic) allocated memory space Code

* Administrative data (managed by the kernel)

— Task (process, thread) descriptor PID

— Unique ID (PID, TID)

_ State State

— Context of the task: the descriptor of the execution state T
* Program counter, CPU registers
* Scheduling information Permissions
* Memory management state 1/O state

— Owner and permissions

— 1/0 state information

Task management

Where to store the administrative data?

In the kernel’s memory range?
— ,Expensive” area, the kernel’s memory usage should be minimized

In the memory range of the process?
— More difficult to be accessed by the kernel
How often this data is accessed?

— Often -> should be stored in the kernel’s space
— Rare -> should be stored in the process’ space

UNIX example
* Classification of administrative data u-space
— Mostly needed when the process is running process-space
* Permissions
* State and data of system calls
* |/O operation data proc structure
* Accounting and statistical data kernel-space
— Mostly needed for handling processes
* ID-s

* Running and scheduling states
* Memory management data

Task management 13/22

} BMEMIT Operating Systems Spring2017.
The states of the tasks

* Creation
— The task’s program loaded
— The kernel creates the data structures and register the new task
— The task enters into the ready-to-run state
* Operation
— ready-to-run (waiting for the CPU)
— run (the task’s program is running on the CPU)
— waiting (waiting for a certain event)
* Termination
— The program terminates itself, or the OS detects a fatal error and terminates the task

(ready-to-run > :> (running

SR J %

Task management

2
State transitions of the tasks

* State transitions are caused by system calls and interrupts
— The system call also results an interrupt
— Therefore the state transitions are caused by interrupts
— Therefore the kernels are interrupt (event) driven

* Changing into kernel mode can occurred when the task is in running state
— The running state can be subdivided (user and kernel mode)

* The transition run -> ready-to-run is performed by the kernel’s scheduler

(details later) ,
running
(user mode) >

g

runnlng

scheduler
Task creation ready-to-run :& (kernel mode)

o
C C
(cemon) (v) remtoanon)

Task management

m=zz 8 BME MIT Operating Systems Spring 2017.

How tasks are created?

* The first few tasks are created by the kernel when the system boots

The init or Wininit starts the services of the OS
— Before the user login, already ~100 tasks are running

User logs in, and starts programs

Simple example in UNIX:

if ((res = fork()) == 0) { // child’s branch
exec(...); // for example: another program is loaded
// if returns: exec error

} else if (res <0) { // parent’s branch, checking errors
// for example: if there is any errors during fork()

b
// res = CHILD_PID (>0), the parent’s code runs forth

—The fork() method duplicates the current process (starting a new process)
* All process data is ,copied”

—The exec() method loads the new programs code into the initiator programs
memory space

Task management 16 /22

|
Tree of UNIX processes

A process can only created by another process
— Every process has a parent and may have children
— In this way the processes can be ordered in a tree
— The parent can change (if the parent process terminates)

The fork() method returns the children’s PID to the parent
— The parent can manage its children

The root process (PID=1, e.g.: init)

— Parent of every process

— Runs till the system runs

— Inherits the ,,orphan” processes

— Manages/controls some of the system services

Family is important
— The parent gets notification if the child process is terminated

Task management 17 /22

Switching tasks on the CPU

* The running task gives up the right of running (voluntarily)
— Terminates itself (exit())
— Performs a system call and waits for its result

* The right of running is taken away from the running process
— E.g.: time division systems, the process time slice is over
— The scheduler can take away the right of running in certain systems
— Due to interrupt or exception (error handling)

* Preemptive and non-preemptive schedulers

— The preemptive scheduler can take away the right of running from
the processes

— When using non-preemptive scheduler only the process can give up
the right of running

— The right of running can be taken away in both cases when interrupt
or exception (error) occurs

Task management

BME MIT Operating Systems Spring 2017.

State transitions with preemptive scheduler

C running >
Preemptive (user mode)

scheduler @ ﬁ

running
(kernel mode)

“— C
% N
Y (Cremaen)

ready-to-run

Task management

E
The context change

Context (the descriptor of the execution’s state)

— Program counter (PC), CPU, MMU states, etc.

— The kernel has its own context, on the level of the kernels own tasks

If two tasks switching between the CPU, the context has to changed
— The context of the running task has to be saved

— The execution state of the former running task has to be restored

— The control is passed to the now running task

The interrupts causes context changes (task -> kernel)

— A small part of the actual context is saved by HW instructions
— (The interrupt handler performs additional state saving)

— The interrupt handler runs and returns to point before the IT
— During the return, the former context is restored

System calls are works with interrupts -> causing context changes
— Switching between user and kernel mode is also a context change
There are many context changes during the operation of the OS
— Context changes should be implemented with minimal overhead

— In some cases saving the whole context isn’t necessary -> IT handler don’t change the whole
context, only a small part of it (PC, CPU registers...)

Task management 20/ 22

Execution mode and context

User mode | Kernel mode

The task’s program is running The task is performing a system call

Task context

Kernel context

(empty) IT handling and system management

Task management 21/22

m=zz 8 BME MIT Operating Systems Spring 2017.
Summary

* High number of tasks with different nature (simultaneously)

— 1/0 intensive (less computation, lot of waiting)

— CPU intensive (more computation, less waiting)

— Tasks requiring real-time operation (deadline)

— Multimedia tasks

— (There are some system task along user tasks)

— The user expectations can be various

* Waiting time, response time, turnaround time, throughput, resource utilization

* The basics of task management

— Task: a program during execution, it has a state and life-cycle

— Abstract virtual machine: ,virtual” CPU and memory for the tasks

— Process: a task with its individual memory range, may contain threads

— Thread: A task with sequential operation, it may share memory with other threads
* The life-cycle of tasks

— Creation, ready-to-run, run, waiting, termination

— The context changes are caused by interrupts

— The task change means context change, which is often during the kernel’s (and the OS)
operation

Task management 22 /22

	Slide 1
	The operating systems (recap)
	The main blocks of the OS and the kernel
	The nature of user tasks
	User expectations about user tasks
	The optimal task executer system
	The basics of task managing
	Separation of the tasks (abstract virtual machine)
	The base types of tasks: process and thread
	Should I use a process or a thread?
	Task managers
	Data structures of the tasks
	Where to store the administrative data?
	The states of the tasks
	State transitions of the tasks
	How tasks are created?
	Tree of UNIX processes
	Switching tasks on the CPU
	State transitions with preemptive scheduler
	The context change
	Execution mode and context
	Summary

