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The operating systems (recap)

* Serving user (and system) tasks
— Life-cycle (creation, operation, termination) and event monitoring
— Providing computational and storage resources
— Providing access to the devices of the computer

* System libraries: Common functions for applications
— Supports the application development

— Providing simple interfaces to system calls (entering protected
mode)

e System applications (and services)
— Applications (user-mode) which come with the OS
— Integrated commands, user interfaces, services
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The main blocks of the OS and the kernel
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The nature of user tasks

Tasks with intensive I/O usage
— Moving and processing data
— Reading and writing to HW devices (disc, USB drive, etc.)

— Most of the time these tasks’ state is ,waiting/idle”
* Waiting for I/O operations or user interactions
* Therefore less CPU time is needed

Tasks with intensive CPU usage

— Performing longer computational operations

— Most of time these tasks’ state is ,running” (at least want to be...)
— Compared to CPU usage less I/0 is needed

— E.g.: cryptography, mathematical operations

Tasks with intensive memory usage

— Working with large amount of data at once

— If there is enough memory -> CPU intensive, if not -> /0 intensive
— E.g.: multiplying large matrices, building and using database indexes

Special demands (examples)
— Providing real-time operation
— Smooth media playback
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User expectations about user tasks

* Low waiting times
— Waiting time
* Waiting for resources (taken by other tasks), idle state

— Turnaround time
* Time that a task needs to finish it's operation

— Response time
* Response time to a given event

* Good resource utilization

— CPU utilization

* Time ratio of the time, when the CPU is not idle
— Throughput

* Tasks performed in given time slice

— Overhead
*  Wasting” resources to OS administrative tasks

* Predictability, deterministic operation
— Small variance of the measures above
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The optimal task executer system

* The naive user expects optimal behavior for the OS
— Executes the users’ tasks
— Minimizing the waiting and response times
— With good resource (CPU, 1/0) utilization
— With little overhead

* What’s he experience using the system?
— Some tasks runs very slow (starving)
— The concurrent tasks interfere with each other (trying to use the same resources)
— Some of the applications freezes without any reason
— Occasionally the whole system becomes unusable (for some time or finally

* What'’s causing these difficulties?
— The OS don’t know the nature of the tasks in advance
— High number of tasks with different natures
— The tasks may have explicit or implicit effects on each other
— The tasks’ programs are not optimal, especially in cooperation
— Occasionally the system is overloaded, the overhead gets high suddenly (thrashing)
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The basics of task managing

* The user activities are performed by programs
— They start, run and terminate

* The task is a program during execution
— The execution is managed by the OS
— A program stored on the HDD is a static binary program and data structures
— A task is a dynamic entity with state and life-cycle
— State: The administrative properties of the task in a given moment
— Life-cycle: The state transitions of the task from the start to the termination

* Assigning user activities with tasks

— In most cases one activity is performed by one task
* Except some cases: complex activities require more than one task
* Or parallel tasks (on multiple machines)
— The task can communicate and cooperate
* Sending and receiving data from each other
* The main activity can be decomposed to smaller jobs, partial results can be summarized
* The tasks can form common procedure structures and cooperation schemas
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Separation of the tasks (abstract virtual machine)

* The ideal scenario: every task runs independent of each other
— No effects on other tasks
— It seems they running on a separate machine (resources)

* |n the reality: not enough resources for each task
— They have to share the resources (CPU, memory, etc.)
— Goal: the task (and the user) don’t notice this
— The kernel provides an abstract virtual machine for the tasks (virtual CPU and memory)

— A typical multi-programmed system
* M processor (1<= M <= 8), N task (N > 10-100)
* More task than processor (N >> M)
* N abstract virtual machines have to be assigned to the physical resources
* In a way that the tasks don’t the existence of other tasks, but still sharing the common resources

* Complex activities require more than one task: this makes the situation more
complex
— Communication (IPC) and cooperation schemas have to be provided
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The base types of tasks: process and thread

Not every task needs a ,full” abstract virtual machine assigned
— Running of parallel jobs don’t has to be complicated with task-separation
— The task-separation need higher administrative procedures (higher overhead)

Process
— A task with it's own memory range, it can contain threads

Thread
— A task with sequential operation, it may share memory with other threads

Relationship between process and threads

— The process contains threads, which running ,parallel”

— The threads in a process have shared memory (but own stack)

— They can communicate with each other via the shared memory (variables)

— There isn’t any memory protection between them, the
developer/programmer has to deal with this

— The threads memory are separated from other process threads’ memory by
the OS

— Communication between processes therefore more complicated
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Should | use a process or a thread?

* Activity - task assignment and process vs. thread decision
— Is the activity needs to be multi-programmed?
— How many parallel execution units required?
— How often?
— Is the threads are supported in the given system? (see embedded OS-s)

* Pro-s and con-s of the threads
— Low resource requirement (fast creation)

— Inside the process: simple (and fast, no overhead) communication with other threads
* Due to the shared memory
* The programmer has to design the operation carefully
* It may lead to errors (see later lecture)

— Not every platform supports it (most of them does)
— Communication with threads of another process still complex

* Pro-s and con-s processes
— The kernel protects the memory range of the process
— Available on almost every platform
— Higher overhead
— The communication with other process are more complex -> higher overhead
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Task managers

158 Windows Task Manager

File Options View Help

Applications | Processes | Services

Performance | Networking | Users

CPU  Memory (...

Image Name Description
chrome.exe *32 05 129 796 K Google Chrome
putty.exe *32 i} 3 364K  S55H, Telnet and Rlogin dient
PrivacylconClient.exe ] 11 024K Intel(R) Management and Security Status
POWERPMT.EXE oo 79 132K Microsoft PowerPoint
putty.exe *32 oa 2536 K 55H, Telnet and Rlogin dient
taskmar.exe i} 3 208K Windows Task Manager
vmware-tray.exe 32 ] 1492K  VMware Tray Process
RAVCple4.exe v} 3888 K Realtek HD Audio Manager
igfxpers.exe i} 2843 K persistence Module
firefox.exe *32 an 911 472K Firefox
hkemd, exe an 2520K  hkemd Module
igfxtray.exe oa 2 752K ighTray Module
chrome. exe *32 i} 1052K Google Chrome
explorer.exe i} 35 272K Windows Explorer
dwm.exe v} 102 564K  Desktop Window Manager
jusched.exe *32 i} 4300K Java Update Scheduler
MNvBackend.exe *32 ] 10 088 K MVIDIA GeForce Experience Backend
chrome. exe *32 i} 8008 K Google Chrome
chrome.exe *32 oa 45 736 K Google Chrome
DiTLite.exe *32 aa 3076 K DAEMON Tools Lite

i owndoud,exe *32 an 156 340K ownCloud
chrome.exe *32 v} 1243 K Google Chrome
egui.exe oo 183816 K ESET Main GUL
conhost.exe an 1432K
nustraamaur eva nn 4706 K

| '&' Show processes from all users

Processes: 78 CPU Usage: 6%

End Prot

Physical Memory: 52%
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Data structures of the tasks

* Activities performed by programs Stack
— Tasks have state and life-cycle * * *
— Tasks have own and administrative data structures

i F
* Program data (in the task’s memory range) ree memory

— Code f f f

— Static allocated data Heap

— Stack: temporary storage, e.g. for function calls Static data

— Heap: runtime (dynamic) allocated memory space Code

* Administrative data (managed by the kernel)

— Task (process, thread) descriptor PID

— Unique ID (PID, TID)

_ State State

— Context of the task: the descriptor of the execution state T
* Program counter, CPU registers
* Scheduling information Permissions
* Memory management state 1/O state

— Owner and permissions

— 1/0 state information
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Where to store the administrative data?

In the kernel’s memory range?
— ,Expensive” area, the kernel’s memory usage should be minimized

In the memory range of the process?
— More difficult to be accessed by the kernel
How often this data is accessed?

— Often -> should be stored in the kernel’s space
— Rare -> should be stored in the process’ space

UNIX example
* Classification of administrative data u-space
— Mostly needed when the process is running process-space
* Permissions
* State and data of system calls
* |/O operation data proc structure
* Accounting and statistical data kernel-space
— Mostly needed for handling processes
* ID-s

* Running and scheduling states
* Memory management data
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The states of the tasks

* Creation
— The task’s program loaded
— The kernel creates the data structures and register the new task
— The task enters into the ready-to-run state
* Operation
— ready-to-run (waiting for the CPU)
— run (the task’s program is running on the CPU)
— waiting (waiting for a certain event)
* Termination
— The program terminates itself, or the OS detects a fatal error and terminates the task

( ready-to-run > :> ( running

SR J %
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State transitions of the tasks

* State transitions are caused by system calls and interrupts
— The system call also results an interrupt
— Therefore the state transitions are caused by interrupts
— Therefore the kernels are interrupt (event) driven

* Changing into kernel mode can occurred when the task is in running state
— The running state can be subdivided (user and kernel mode)

* The transition run -> ready-to-run is performed by the kernel’s scheduler

(details later) ,
running
(user mode) >

g

runnlng

scheduler
Task creation ready-to-run :& (kernel mode)

o
C C
(cemon ) (v ) remtoanon )
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How tasks are created?

* The first few tasks are created by the kernel when the system boots

The init or Wininit starts the services of the OS
— Before the user login, already ~100 tasks are running

User logs in, and starts programs

Simple example in UNIX:

if ((res = fork()) == 0) { // child’s branch
exec(...); // for example: another program is loaded
// if returns: exec error

} else if ( res <0 ) { // parent’s branch, checking errors
// for example: if there is any errors during fork()

b
// res = CHILD_PID (>0), the parent’s code runs forth

—The fork() method duplicates the current process (starting a new process)
* All process data is ,copied”

—The exec() method loads the new programs code into the initiator programs
memory space
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Tree of UNIX processes

A process can only created by another process
— Every process has a parent and may have children
— In this way the processes can be ordered in a tree
— The parent can change (if the parent process terminates)

The fork() method returns the children’s PID to the parent
— The parent can manage its children

The root process (PID=1, e.g.: init)

— Parent of every process

— Runs till the system runs

— Inherits the ,,orphan” processes

— Manages/controls some of the system services

Family is important
— The parent gets notification if the child process is terminated
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Switching tasks on the CPU

* The running task gives up the right of running (voluntarily)
— Terminates itself (exit())
— Performs a system call and waits for its result

* The right of running is taken away from the running process
— E.g.: time division systems, the process time slice is over
— The scheduler can take away the right of running in certain systems
— Due to interrupt or exception (error handling)

* Preemptive and non-preemptive schedulers

— The preemptive scheduler can take away the right of running from
the processes

— When using non-preemptive scheduler only the process can give up
the right of running

— The right of running can be taken away in both cases when interrupt
or exception (error) occurs

Task management



BME MIT  Operating Systems Spring 2017.

State transitions with preemptive scheduler

C running >
Preemptive (user mode)

scheduler @ ﬁ

running
(kernel mode)

“— C
% N
Y (Cremaen )

ready-to-run
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The context change

Context (the descriptor of the execution’s state)

— Program counter (PC), CPU, MMU states, etc.

— The kernel has its own context, on the level of the kernels own tasks

If two tasks switching between the CPU, the context has to changed
— The context of the running task has to be saved

— The execution state of the former running task has to be restored

— The control is passed to the now running task

The interrupts causes context changes (task -> kernel)

— A small part of the actual context is saved by HW instructions
— (The interrupt handler performs additional state saving)

— The interrupt handler runs and returns to point before the IT
— During the return, the former context is restored

System calls are works with interrupts -> causing context changes
— Switching between user and kernel mode is also a context change
There are many context changes during the operation of the OS
— Context changes should be implemented with minimal overhead

— In some cases saving the whole context isn’t necessary -> IT handler don’t change the whole
context, only a small part of it (PC, CPU registers...)
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Execution mode and context

User mode | Kernel mode

The task’s program is running The task is performing a system call

Task context

Kernel context

(empty) IT handling and system management
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Summary

* High number of tasks with different nature (simultaneously)

— 1/0 intensive (less computation, lot of waiting)

— CPU intensive (more computation, less waiting)

— Tasks requiring real-time operation (deadline)

— Multimedia tasks

— (There are some system task along user tasks)

— The user expectations can be various

* Waiting time, response time, turnaround time, throughput, resource utilization

* The basics of task management

— Task: a program during execution, it has a state and life-cycle

— Abstract virtual machine: ,virtual” CPU and memory for the tasks

— Process: a task with its individual memory range, may contain threads

— Thread: A task with sequential operation, it may share memory with other threads
* The life-cycle of tasks

— Creation, ready-to-run, run, waiting, termination

— The context changes are caused by interrupts

— The task change means context change, which is often during the kernel’s (and the OS)
operation
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